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In the last lecture we have been talking about Shannon entropy which is basically a classical 

information system which tells me what is the optimal compression that I can get. 
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And if just to summaries what we said is supposing we have a random variable x corresponding 

to a physical process with has possible outcome which has possible outcomes x1, x2 up to xM 

with respective probabilities P1,P2 up to PM subject of course Σ P to 1 we said that the average 

uncertainty associated with the event is what is called as the Shannon entropy and has an 

expression which is Σi Pi log Pi we mentioned that traditionally it is conversational to take the 

base of the logarithm to be equal to 2. 

 

The second point that we notice is that this definition does not depend up on the value that the 

random variable takes but rather or then on probability with which a particular event occur. We 

also said that Shannon entropy gives a lower bound on the uncertainty associated with an event 

and if the length of a uniquely describable prefix code happens to be ni with the probability Pi 

then the length of the word should be ≥ the Shannon’s probability function H. 
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What Von Neumann did is to generalize this to the case of quantum systems and it did it by an 

argument which we will not go to but what happens is like Shannon entropy characterizes 

uncertainties of classical event, Von Neumann entropy provides a measure of our ignorance or 



uncertainties of the quantum systems like in Shannon case the situation that would look at is not 

that a pure system but of an ensemble described by a density matrix ρ we have had. 
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Quite a bit of a discussion on the property density matrix. 
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And we have said if I have an observable A.  
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The expectation value of the operator A is given any Tr of A with ϱ where ϱ is the density matrix 

and that the density matrix as a property that Tr ϱ =1 for a pure system we had seen that ϱ
2
 must 

be also = ϱ. 
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So Von Neumann entropy S(ϱ) provides a measure of the degree of mixedness in a ensemble so 

firstly I require for a pure system like in case of Shannon entropy for a pure system. 
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S(ϱ)=0 Von Neumann took his use of Shannon discussion of entropy and he defines the entropy 

if it is now carries his name as equal to minus remember it was -Σi Ti log Pi log Pi so this is –Tr [  

ϱ log ϱ] and as before I can take the base of logarithm what I want but they as I said the 

traditionally you will take the base is 2. 
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So let us look at what are the properties of this system like this. First thing is since entropy must 

be independent of the bases in which you are calculating because is that Tr so therefore I could 

go over to a representation in which ϱ is diagonal. 
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And then my S(ϱ) would then be given by -Σi  λi log λ there are few properties of this which we 

will discuss. So of course from the definition it becomes clear that your S(ϱ) is equal to 0 for a 

pure system and the reason is the following if you take. 
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S(ϱ) to be equal to -Σi  λi log λi  recall that for a pure system one of my λi  is must equal to one and 

all other is 0. So therefore, I get -1 log 1 -0 log 0 but 0 log 0 is to be understood in as a limit 

which is equal to 0 so therefore, for a pure system may be a particular λi =1 for specific i and is 

equal to 0 for everything else. So therefore, S(ϱ) =0 that is one property which we wanted and 

that is fine. 
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Now what is the maximum value of the entire this requires a detailed mathematical proof I will 

not go through it, but since I said I will give an intuitively which is very simple thing to 

understand since we said that entropy is the measure of the degree of mixedness of the system 

supposing I am D dimension they have a D dimension then if there are D number of non-zero 

Eigen values and obviously the maximum mixedness comes for the case where each of the D 

Eigen values is equal to 1/D. 

 

And that is because the sum of the Eigen value of the density matrix must be equal to 1 because 

Tr of ϱ is equal to 1 so therefore I must have the S(ϱ). 
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Maximum log of D.  
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There is another property. Which is valid for a bipartite system multi qubit systems we have 

discussed and so what we are saying is this.  
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That entropy for a composite system ϱAB ≤ s(ϱA)+ s(ϱB) once again I will not be proving these, 

but I will illustrate them there validity vise on example.  
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The equality holds if my ϱAB for the multi qubit case or two qubit situation in this case is ϱA ϱB 

factorize. Now you can see why this at least should be true.  
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So you know that for pure states the Eigen values of the density matrices is an identical with the 

one of the values being equal to 1 and all others being equal to 0. 
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Just ϱA ϱB must have their same Eigen values so therefore equal this is the standard mixing 

theorem that is when you mix this system SA and SB the S(ϱA ϱB ) becomes less than equal to 

this. As I said there will be very few regress proof I will get for the Von Neumann entropy let me 

give you a few examples for this consider a pure state ϱ. 
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So I know that the Eigen values are 1 and 0 so supposing I go we are representation  in which 

design so obviously this we so I know of course S(ϱ) = 0. Now consider a state |ψ> = 1/ √2 (|0> 

+|1>) remember the diagonal states that we had talked about. So my rho here so this is the pure 

state is |ψ> <ψ| and this is equal to if I go over to the matrix representation I have 1/√2 twice at 

the herein so it is ½ remember that |0> is 1, 0 and |1> is 0, 1.  

 

Now the corresponding bra’s are 1, 0 row etc. So I get 1, 0 + 0, 1 which is nothing but 1, 1 and 

this is of course 1,1 because this is just the diagonal bases. Which then is ½ if we multiply these 

two you get 1, 1, 1, 1. So you can see immediately that the Eigen value of this matrix will be 1 

and 0 so once again s(ϱ ) = 0. But consider a next cube, for example the maximum Linux state 

which we have discuss several times has supposing. 
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ϱ = ½, 0, 0, ½ s(ϱ) you can easily immediately log2(1/2) – ½ (log 2) ½ so that adds up to one, so 

this is equal to simply log 2 2 = 1. Now let me give you an illustration, of that inequality that I 

talked about. Let us consider the following situation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 13:24) 

 

 

 

Consider a state which is Cos θ |00| + sin θ |11| 2 qubit state, well since this is the pure state I can 

immediately calculate what is the entropy of these two states and find out that the entropy = 0. 

So let us look at what happens to my ϱ here. So in this case look at what is ϱ
A 

okay like this is 

my bit A this is my bit B, remember how I calculate ϱ, I calculate ϱ
A 

by taking a partial trace 

over B of ϱAB. 

 

And what is ϱAB ? ϱAB is simply this get multiplied by the corresponding value. So let us write 

ϱAB = cos θ |00| + sin θ |11|multiplied by cos θ <00|+sin θ<11|. So I can write down this as = cos
2 

θ |00><00| + sin
2 

θ |11><11| + cos θ sin θ (|00><11| + |11><00|). Now if I take a trace of let us 

say B remember what we said, so B is this second bit, we said that when you take a trace of a ket 

followed by a bra all that you get is the product of the bar with the cketat, do you know product 

of bra with a ket. So if I am taking a trace. 
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I am going to get equal to cos
2 

θ |0><0| the B that is spaced out but I have 0 here and a 0 here so 

that I get 1+ sin
2 

θ |1><1| these terms will give a zero because when I am taking a trace over B I 

have trace out 0, 1 which is the scalar product of 1 with 0 or in this case is 0 with 1 both of them 

become equal to 0. So if I now, now that I have got a one qubit situation I can express ϱA. 
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Which is by this, so this is nothing but cos
2
 θ and sin 

2 
θ which is of course a proper density 

matrix because you can see that the ϱA adds up to 1. So what happens to my entropy in this case 

S
A 

so my S
A 

is the Eigen values since it is already in a diagonal form Eigen value are cos
2
 θ sin

2
 

θ so I get S
A 

= cos
2
 θ - sign in front of it logarithm (cos

2
 θ) -  sin 

2 
θ logarithm (sin 

2 
θ) which is 

equal to. 

 

So recall what is it that I am doing here this is nothing but 2 log (cos θ) so I get -2 cos
2
 θ log (cos 

θ) – 2 sin 
2 

θ log (sin θ). Now I will obviously get a similar expression, identical expression 

where I consider ϱB which is obtained from ϱAB by tracing out A because the expressions you 

have absolutely symmetrical there is no reason to expect that my S
B 

would be any different. 
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So my S
B 

will also be -2 cos 
2 

θ log (cos θ) – 2 sin 
2 

θ log (sin θ). And so therefore my S
A 

+ S
B 

when I just add them up I get -4[cos 
2 

θ log (cos θ) + sin 
2 

θ log (sin θ)] remember the cos θ and 

sin θ are less than 1 so the logarithm turns of the negative but there is a minus sign in-front of a 

which will make it greater than 0, but the pure state ϱAB the entropy was 0, so the that sort of tells 

you that. 
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The entropy of the mixed state is less than the sum of the entropies of the two component pure 

state. Having done this we would proceed to the quantum communication I would not have time 

to discuss the reason why Von Neumann entropy become significant for quantum 

communication because a theorem very similar to the Shannon entropy case for noiseless coding 

is applicable for the compression of quantum colloquia. 

 

There are many theorems parallel theorems for quantum systems but that would take us outside 

the scope of this course and in the next lecture I will be talking about different protocols for 

quantum communication. 
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