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In the last lecture we had talked about the first two postulates of quantum mechanics the first 

postulate was that every physical system is represented by a ray in an abstract inner product 

space known as the Hilbert space. The second thing that we did is to point out that there is really 

no difference between a state which we represent by let us say ψɸ and another state which is 

represented by a scalar multiple of the same state ψ where the scalar multiple is in general a 

complex number. 

 

And because of that the states are actually represented not by a given vector in the Hilbert space 

but by a ray in the Hilbert space. Having done that we had defined operators which are linear 

operators in the vector space and towards the end of the lecture we were telling you that there are 

matrix representation possible both for the state that is vectors and the operators which act on 

this space. 
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We had seen that a general operator has a structure like a ket α followed by a bra vector so that it 

can act on an arbitrary vector by giving me another vector. Now supposing these two have the 

same dimension, if these two have the same dimension D then this is a product of a column 

vector with a bra vector having the same dimension. So if this is a column vector of D dimension 

that is there are D entries in the column and if this is the bra vector then I get a d x d matrix.  

 

Now you have to realize that this is not an ordinary matrix multiplication, but is what is known 

as direct multiplication of matrices are also known as Kronecker product of the matrices. Now 

the way it works something like this, supposing I have a matrix which is I write as A11, A12, A21, 

A22 and try to multiply this with  a matrix which is let us say B11, B12, B21, B22 then the way this 

product works is, you take the element A11 and multiply with the matrix B itself. 

 

And similarly A12 with B, A21 with B and finally A22 with B, now this of course you have to now 

expand it out and I will not write down the entire form for a matrix, but the way it goes like this. 

So I have A11 multiplied these two by two matrices so I will have B11, A11 with B12, A11 with 



B21, A11 with B22 and like this I have, so it will become A/4 matrix. So this is what is meant by a 

matrix product or Kronecker product. 

 

Now we talked about that physical observables such as energy, angular momentum, momentum 

etc are represented by self ad joint or Hermitian operator both the languages are the same. Now 

according to this postulate of quantum mechanics which I still in system calling it second 

postulate a state ψ, a state ψ has a definite value λ. I will explain what it means by that.  
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Definite value λ for an observable what it means is that supposing I am interested in finding out 

what is the energy of the state ψ so my observable is energy. Now then if I measure the energy of 

ψ then I can make a statement that the energy has a particular value, only if this state ψ happens 

to be an Eigen state of the operator corresponding to energy with an Eigen value λ.  
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So they postulate simply says that supposing you have any observable A or this is operator 

corresponding to the observable A. Now if this acts on an arbitrary state ψ and gives me a 

number of times the same ψ, then this λ is called the Eigen value of the operator A and the 

corresponding ψ is called an Eigen vector corresponding to this Eigen value. Now an arbitrary 

state is not necessarily an Eigen state of an operator, but the if you take the collection of Eigen 

states corresponding to a given operator in the [indiscernible][00:06:20] space then this set of 

Eigen states they form a complete basis. 

 

What is meant by a complete basis, it simply means that an arbitrary vector in that state can be 

expanded in terms of the Eigen states of any operator corresponding to whatever observable you 

have. In other words I can expand an arbitrary state in terms of let us say a complete set of Eigen 

states of the energy of it, or I can do the same thing in terms of the complete set of Eigen states 

of let us say angular momentum operator. 

 

Now so suppose I am identified one particular observable in which I am interested in, no 

particular reason but let me for specific purpose call it an energy. So I am interested in finding 

out what are the Eigen states of the energy of it. Now and I have determined the complete set of 



the Eigen states just to give you a familiar example to you that you have solved the problem of 

hydrogen atom and found out that there are possible energy levels which are given by the bourse 

energy condition, the ground state be having an energy -13.6 electron volt, the next higher states 

having energy -13.6/4, the next one -13.6/9 etc., etc.,  

 

Now each one of these the state corresponding to each one of these values these values are called 

Eigen values. Is an Eigen state corresponding to that Eigen value, so what we are saying in this 

context is an arbitrary state of the hydrogen atom can be expanded in terms of these Eigen states 

corresponding to definite Eigen values. And what this of the, that the postulate said is that when I 

make a measurement of the energy, then the best I can do is to predict the various probabilities 

with which they will occur. And I cannot definitely say if you do a measurement you will get -

13.6.  

 

(Refer Slide Time: 08:52) 

 

 

  

Now one can show that if we consider a normal matrix they, actually the theorem is I am 

interested in that theorem for only the Hermitian matrices, but in practice the theorem is actually 

true for much more general matrices called the normal matrices, normal matrices of this property 

that A
+
 A is equal to A

+
. 
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Now if you look at that type of matrix and if you look at any normal matrix there is a theorem 

which says which says, which is called spectral theorem and the spectral theorem simply says 

that this matrix or the operator, the operator and the matrix they will be used interchangeably can 

be expanded in terms of like this, the Eigen value corresponding to the operator times another 

operator called Pn and this Pn is a projector the Pn is a projector corresponding to the Eigen state 

λ. 

 

Now if you think about it is not all that difficult to understand what it means see basically we are 

saying that if you have an operator. Now you can resolve that operator into various operators 

which project the state along a particular Eigen state and spectral theorem simply says that. Now 

so obviously there are some properties to be satisfied by these operators this projection operators.  
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So one of them is Pm x Pn is 𝛿m,n means if you multiply actually Pm x Pn is 𝛿mn x Pm there is a 

mistake in that slide. 
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So Pm. x Pn is equal to 𝛿mn times Pm. Now this is actually obvious because once you are projected 

in that direction these are orthogonal projections once you are projected in let us say direction N, 

now if you now try to project something in the direction M obviously it is going to be 0 unless it 

is in the same direction. And if it is in the same direction then Pm square must be equal to Pn. The 

other thing is that these operators are hermitian, matrices are also our hermitian and secondly I 

must have a completeness that is sum over Pm must be equal to i because I am resolving an 

arbitrary operator in terms of its orthogonal projections. So obviously when I add up all of them 

they have to give me the same identity value just to illustrate the spectral theorem let me look at 

the basis in C2 again. 
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The C2 is one where we keep on coming back with various types of bases I have told you that C2 

has a basis which is 1001 but let us look at another basis in C2. 
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This is normalized basis 1 over square root of 2 11, and 1 over square root of two 1-1. In other 

words in terms of these two bases I can expand any vector in that two dimensional space. Now 

these vectors are Eigen states of a matrix which looks like 0, 1, 1, 0 we will later on see this 

matrix has a very important place in our physics that will be doing. Now so this is an Eigen state 

of this operator with an Eigen value let me write it as λ=+1 and this one corresponds to λ=-1. 

 

You can easily see the Eigen states of this is plus or minus 1 so this as the Eigen Values plus or 

minus 1. Now let us look at what does this spectral theorem say, so first one is supposing I call it 

e1 and supposing I call this e2 then my operator P 1 corresponding to this Eigen state is e1, e1 

this is the general structure and you can immediately multiply. So I have 1 over square root of 2 

into 1 over square root of 2 which is equal to 1 by 2, I multiply 11 with 11, this is a direct 

product so therefore I get 1 by 2 you can see 1 into 1 1,1,1,1, this is p 1. 

 

And the corresponding thing for the other Eigen value is e2, e 2 and that is equal to 1 over 2, 1-1, 

1-1 you can multiply these easily. So I get 1-1, -1 and 1. So these are my two projection 

operators. And you can immediately see what I am trying to tell you in the spectral theorem is. 
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That my original matrix which is 0, 1, 1, 0 is given by λ1 which is equal to 1 into the first 

projection operator which is 1/2 1, 1, 1, 1 + -1 times 1/2 1-1, -1 1. You can see that this does it 

did give this one. So this was my second postulate and we have done some linear algorithm. 

Now I come to a rather important philosophical process which is the component of Copenhagen 

interpretation which was the most contested component of the Copenhagen interpretation by as I 

have told you in the beginning [indiscernible][00:15:33]. And this is what is known as the wave 

function collapse. 
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Now the wave function collapse is a postulate which has certain amount of philosophical 

significance, let us try to understand what it means. So what we said in the beginning is that if I 

look at and arbitrary ket ψ. 
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Then I can write it as a linear combination of Cn ψn where this ψn from a complete set of Eigen 

states of corresponding to any operator okay, complete set of Eigen states of any operator. Now 

supposing I have a system in this state and I have expanded this in terms of complete set of 

Eigen states of an operator let us again for specific idea let us say its energy operator. And I now 

using this state I want to measure the energy of the system, what the Copenhagen interpretation 

says is the following, that the result that you would get when you make a measurement of the 

energy will be one of the possible Eigen Values of this set. 
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Remember we said ψn are complete set of Eigen states means the ψ1 corresponds to λ1, ψ2 

corresponds to λ towards etc. So what we are saying is that if you take a measurement of the 

state I cannot tell you what will be the result I will get.  
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But I can tell you that you will get either λ1 or λ2 or up to λm. And I can say to something more, 

I can say that the probability with which the value λ1 will occur in a measurement will be given 

by C1
2
. Likewise probability with which λ2 will appear will be given by C2

2
 itself. And in 

general this Cn
2
 you can easily see by definition of my projection operator is nothing but ψPnψ. 

And Pn then is nothing but supposing I represent λm, λn I had written it as ψn does not matter as 

the projection operator corresponding to the Eigen value λn then this is what the probabilities are. 

 

So on making a measurement the wave function of the system would suddenly collapse to the 

Eigen state corresponding to the Eigen value that you have measured this is called collapse of the 

wave function. Now what it means is something deeply philosophical, it tells you that quantum 

mechanics has two parts. One who can know observation is being made, what happens there, 

how does the wave function change which I am going to talk in a moment. 

 

But a process of measurement is a totally discontinuous process. During that process of 

measurement, the state of the system would collapse to one of the Eigen states of the system. 

And there is no way for anybody can predict which Eigen state if you collapse to, the best that 

one can do is to tell you that this will be the probability with which a particular state will appear. 



Now the question is how does not calculate such a problem that is another problem. The way to 

calculate such a probability would be to make identical copies of the system large number of 

them. 

 

And make the measurement over and over again on different systems but identical, and find out 

how many times for instance λ1 is appearing, how many times λ2 is appearing etc, etc. We will 

see their later that this is itself a tolerant, because there is a theorem which says you cannot make 

identical copies of the system, but that is a differential, that is a philosophical question. Now 

what happens to the state of the system, once it had collapsed.  
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So we have agreed that what has happened is that the state has gone from state ψ to a projection 

of the state on to the Eigen state corresponding to λm. Now if I now normalize this state, I can 

talk about what is the post measurement state of the system. And this is given by Pnψ and I need 

to normalize it simply which means I will divide it by its length, so this will be ψPnψ and you can 

see why, because this should be this quantity multiplied with the corresponding bra, but then I 

will get a Pn
2
, but Pn

2 
is Pn so therefore this is the structure. 

 



So this is the post measurement state of the system let us look at a matrix example to make it 

very clear what is happening suppose I have a state.  
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Which I have normalized it one over square root of five 2, 1 remember normalization simply 

means square of this square of this one divided by square root of that sum. So supposing I have 

this state I want to expand this in terms of the Eigen states of that matrix which I talked about, 

the Eigen states of 0, 1, 1, 0 which was I had taken this to be 1 by square root of 2 1,1 + so I 

write it as C1 + C2 into 1 over square root of two 1-1. 

 

Now this is easy to calculate what is the 1 and 1 C2, because this is a matrix identity. So I just 

put this whole thing and you can do a trivial algebra and so C1 is equal to 3 by square root of 10 

and C2 is equal to 1 by square root of 10. Now what it tells me is this, that if I make a 

measurement and I get this Eigen value to be λ=1 then the post measurement state of the system 

it is normalized value will be 1 over square root of 2, 1, 1. 

 

So this is the third postulate, I will complete the quantum postulates with the fourth postulate 

which is I will not be using it much accepting philosophically that when I am not observing a 

system what happens, when I am not measuring a system what happens the time evolution.  
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So I will call it postulate for convenience remember postulates are hypothesis on which theory is 

based. So therefore you do not question where did it come from. So time evolution how does a 

state ψ develop with time, what it says it follows an equation remember classical physics we say 

that the evolution or the, with time the dynamical quantity follows Newton's law. In this case the 

corresponding equation is known as a schrodinger equation which is given like IH dψ/dt is equal 

to hψ where H is the hamiltonian of the system, hamiltonian operator. 

 

Now this is, you can do a formal solution of this and find that ψ develops with time following 

and unitary operator I should write ψt and a formal solution for u(t) is e
-iHt/h

. Now this is an 

important one that the unitaru operators, the operators which determine which way a state will 

develop are operators which an unitary operator. Now what is the unitary operator and unitary 

operator is an operator which preserves the norm of a state or a vector so just here is the 

definition.  
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That uψ is equal to ɸ if this is what happens, the operator u is unitary if the state ɸ and state ψ 

have the same norm that is ɸɸ is equal to ψψ. Now this is automatically implies that U
+
U=i, i is 

an identity, you can check for instance hat this is an unitary operator, this is the unitary operators. 

Now what is important take in the second last one is that all quantum processes occur develop 

unit area. And as a result the operators which we deal with in quantum computing are all unitary 

operators. 

 

So these are the operators which decide how a state develops with time when you are not making 

another one. The process of measurement makes it a discontinuous process, makes the state 

collapse to one of the Eigen states of the system, and so therefore, the quantum computing deals 

with two aspects of this computation process, one is just to give you a classical analogy it means 

that when it is passing through transistors and gets I am not trying to find out intermediate results 

I am perfectly alright. 

 

The system simply follows a unitary operation, but the moment I decide I want to do a read they 

find out what is the result I must make a measurement and when I make a measurement I can at 

best give you a probabilistic answer. And the result that I will get will be one of the permitted 

results, but I have no way of telling you which result I will get. And this causes a big difficulty in 



extracting information out of the measurements because we are interested in only relevant in 

moment we will see as we go along how one gets it down. 
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