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In the last lecture we started talking about the implementation of the factorization algorithm due 

to sure we will continue with our discussion and see how exactly a quantum computer will be 

able to implement it but let me summarize. 
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What we did so far we said that suppose I have a number N which =  a product of two large 

prime numbers even though they prints in principle my algorithm is applicable to large prime 

numbers my illustration in this for the purpose of this course will be for relatively simple 

numbers because that will only enable you to appreciate what we are actually doing now we have 

seen that there are algorithms like Euclid algorithm or even better algorithms which can compute 

p and q but they are not fast enough. 

 

The traditional Euclid algorithm takes √N  steps in executing this the fastest possible algorithm 

that is known today using a traditional computer is has a complexity which is exponential of 

(log(N)
1/3

 and (log log N)
2/3

) which is still fairly slow. 
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So the problem that we stated was the following that we need to solve an auxiliary problem and 

this auxiliary or equivalent problem is finding or having an Oracle which can compute what we 

call as period of a function so what we do is this we choose a random value M which is less than 

the N which we are required to factorize such that m is co-prime within we already had defined 

what is meant by a co prime that is m and N do not have a common factor having done that we 

defined a function f which goes from the space N to N. 

 

And the function is = m
a
 mod N where a is some number the smallest value of p belonging to N 

for which m
p
 mod N = 1 that is the value of a for which the fN of a becomes = 1 that is called the 

period of the function. 
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The quantum computers can do this step then effectively now let us let us see how this does it so 

we take at an arbitrary value of m complete its various parts till we find m
2 = 1 

mod m now if p 

happens to be old the algorithm will fail because as we have seen in our last lecture that this 

algorithm is based on the fact that if I have an equation x
2
 = 1 mod m then if N is a prime 

number then I will have only the trivial solution which means x = + or - 1but if N is a composite 

number then we have seen that it will have non-trivial solutions but the original equation based 

on which it was done was x
2
 = 1. 

 

 So therefore if  I have an equation of the type x to the power in the even number equal to 1 then 

only my algorithm will be successful they if N is large the classical computer may require 

evaluation of the order of empowers of in a quantum computer as we have seen all the powers of 

m will be simultaneously calculated and stowed of course we have been pointing out time and 

again that in order to extract p I need to go through certain exercise because if i simply do a 

measurement after the Oracle has evaluated it I would simply get a value of the power with an 

arbitrary probability. 
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Now suppose p is even so that we can use this algorithm then we factorize that m
p – 1 = 0 

to 

(m
p/2

+1
 
x (m

p/2 
– 1) = 0 ( m

p/2
 – 1) = 0 m 0 is not a possible solution of this equation because we 

have seen that p is the smallest integer for which m
p
 = 1 since p/2 is smaller than 2 this is 1that 

leaves us with m
p/2

 + 1 = 0 mod N if that happens again the algorithm fix the algorithm becomes 

useful if m
p/2 

+ 1 is not equal to 0 mod N now if  this condition is also satisfied then the solution 

of this equation m
p/2

+ 1 x m
p/2 

– 1= 0 model we have the relevant factors of internet and this is 

basically the algorithm. 
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Now the question is how do you execute this the first step is to choose the size of the register 

what we do is we take an l qubit register and l is chosen such that 2
l
 lies between N

2
 and 2N

2
   

some books would suggest that you take even a wider there that is choose L such that 2
l 
 lies 

between 2N
2  

of 3N
2
 but that is a matter of choice let us call Q = 2

l 
the reason why we will 

choose Q to be a power of 2 is because it will enable us to perform quantum  Fourier, Fourier 

transform process smoothly. 

 

 The first task is to initialize I take two registers of this size that I have mentioned and I first 

initialize both of the registers to the null state having done that I apply a quantum Fourier 

transform on the first register this is something which you have been doing time and again 

because since these are simply null state the process is nothing other than passing all the 0 qubits 

states through Hadamard gates and then we will get a uniform linear combination of the basis. 
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So therefore at this stage my state of the system which I will call  a Ψ1 is given by 1√Q x = 0 to 

Q1 state x and of course the second register is still in state 0 I will now choose a random number 

m which as we have seen must be co-prime with capital N and then I will have a quantum Oracle 

to compute the various powers of this m modulus n and i would like to store these in the second 

register so this is clean and it does not require much of an. 
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 Effort now let me illustrate this with an example I will take. 
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Number N to be 55 now you would say. 
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That you are using a quantum computer to factorize such a small number as I have told you time 

and again I would like the principle to be illustrated by small numbers which I can execute on the 

desktop now if n is equal to 55 which of course i know i have factors 11 and 5 let me choose m 

now in principle I could choose m anything other than a number which has either 5 or 11 as a 

factor but let me just randomly choose the number 13. 

 

So my job now will be to calculate various powers of 13, so 13
n
 now this I have shown it on my 

slide. 
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Various powers but let me try to work it out on the paper as well. So the thing is this that. 
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You can see 13
1
 is of course 13, remember these are discrete arithmetic, now because of the 

discrete arithmetic we have certain advantages which you I should use, now 13
2
 is 169 which is 

nothing 4+165, 165 is nothing but 3x55 so this is equal to 4, I will not write it always but let me 

remind you this is mod 55. How do I calculate 13
3
 do I calculate 13

3
 and proceed the answer is 

no, because 13
3
 is nothing but 13

2
x13

1
 so it is 4x13=52 the attractive thing about modular 

arithmetic. 

 

What about 13
4 

 13 
2 

is 4, so therefore13
4 

 is 4x4=16 like this you can carry on the various 

numbers so let me just repeat a few of them, 13
5
 is 43 you can try out various results, 13

15
 

happens to be 32 and finally as you go along you will find 13
20

 happens to be equal to 1. Now 

this is not very difficult to work out, because we have seen this is what actually we would do in 

order to compute these numbers. 

 

So therefore period of m=13 is 20, so most of my effort today will be to use this example and 

carry you through the general process that I have introduced. Now 0we have said that we must 

choose. 
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The size of the register to be an l qubit register which lies between 2N
2
 sorry N

2
and 2N

2
 a simple 

calculator will tell you that N
2 

is 3025 and 2N
2
 is 4050, sorry 6050. So I can find out what is the l 

value which satisfies this inequality, and you can then see that the possibility is Q=2
12

 =4096. So 

therefore, I take a12 qubit register, at that stage my value of |ψ1> which we have seen is obtained 

by passing the null state of the first register, so Hadamard gate and this is then.  
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1/√4096 we just happens to be 64, [ |0,0>+|1,0> remember the second register continues to be in 

the |0> state last one will be 4095, 0. Now what do I do for the second step, in the next case I 

compute the various powers of m which has been chosen to be equal to 13, and then store my 

result in the second resister, the second register had 0 so the oracle will automatically give me 

the value of the function itself, and at that stage I do not disturb the first register at all.  

 

So cycle will then be √4096 this is 0 now I need 13
0
 which is equal to 1, then |1, and 13

1
 so that 

is nothing but 13, I have actually made that table so it should not be very difficult to work out, 

but on the other hand let us write one or two terms so 2, 13
2
, 13

2
 as we have seen is169 whose, 

which is equal to 5mod 55, sorry this is 4mod 55. And like this I can go till I reach 20, then I say 

the second register is 13
20

 which we have seen equal to 1 mod 55 and then my entire series from 

here starts again. 

 

And finally I will get to the last state which is 4095, 13
4095

 and this will work out to I think 31 

but you can check it. Now at this stage suppose I were to measure the second register then what I 

would get would be a random value from 1 to the last value that I calculated for 13 various 

powers, and let me go back to my table there. 
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You can see these were my various values and so if I measure the second register I would get 13 

for 50 to 16 like this and a measurement of the second register and through in any result and you 

can use anyone of the members on this table to do your calculation. But let me say measuring 

second register give me. 
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Supposing it gives me 9, now if it gives you 9 refer back to the slide again you find that I have 

here. 
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13
6
=9 so I will, if I have measured 9 then at that time my first register might have been in any 

stage like 6, 26 another 20, 46 extra, extra, extra.  
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So the result that I get is the following |ψ3>. 
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Since I have made the measurement of the second register, I have to actually count how many 

times 9 appears there. Now this is what too difficult see what we have our 4096 states starting 

from 0 to 4095, now in that case I get the 6th one that 26th one, so since I know the period to be 

20 I can immediately count that there are total 204 states in the first period. Because I have, once 

I have a 6 there in the first period I will have a 26 in the second period, 46 in the third period 

extra, extra. 

 

But then 204x20 is 4080 so remaining 16 of them where 9 comes also will appear once more so 

in another words I will have 205 values of in first register corresponding to the second register 

having a value line and once I have normalized that state I will have ψ3 = 1/√205 [6 9, 26, 9] 

etcetera and you can check it should be equal to 4080 was the end of a period so therefore last 

one would be 4086, 9. 
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In general structure of this. 
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Would be given by what is shown in the slide as 1/√M, M is the number corresponding to this 

number which is the number of states in the first register corresponding to a given value in the 

second resistor and this is the combined state supposing my measurement in the second register 

it is k then the first register will have X0 which is a starting point plus the position in the period is 

it in the first period which may call 0 d = 0 second period third period etc. So d is the running 

index on that times period, so this is exactly what is written down.  

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 22:01)  

 

 

 

Now at that stage we will apply QFT on the first register. this requires a bit of an algebra but let 

us look at what am I getting. So we had in principle ψ 3 let me write it down 1/√M ∑ d = M – 1 

which is just the running index of which period it is in Xo is the starting point of that first register 

for which the value in the second register was k plus d times p, k which is the result of the 

second resistor which in my example I told you as 9. 

 

Now if I now introduce a q f t on the first register I will get ψ4 so this now QFT is being done on 

the first register which has q number of elements so therefore this is √QM ∑ y = 0 to q – 1 s 1 ∑ 

d = 0 m – 1 exponential of 2πiy x X0 + dp/Q and y, k this is standard definition of the Fourier 

transform. Now let us write it in a particular way so this is equal to 1/ √QM ∑ y = o Q – 1 e
2πiy

 x0 

the first term by Q multiplied with some over D because D is only appearing in the second term 

e
2πiydp/Q 

and then of course y, k. 

 

Now let me write it this ∑ d notice that this is only there in this term so this is equal to 1/√QM  ∑ 

y = 0 to q – 1, e
2πiy

 x0/Q, ∑ d we put it in bracket let us call this Z
d
  and of course YK where we 

have defined Z to be given by e
2πiyp/Q

 let us look at. 
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What this quantity gives me because once I have this now supposing either to measure the first 

register. 
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If I have to measure the first register what will I get I will get a particular value of y.  
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I will get a particular value of y with the probability 1 / QM because there was a 1/√M there.  
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And this term is a unimodular term. 
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So that is one so I left with modulus of ∑ d = 0 m – 1 z
d 2 
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I have written down what is this Z here and this d the ∑d is a finite sum.  
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Since the sum is the finite sum I will be able to execute the sum and find out its value. And this 

will give me the probability with which a particular state Y appears. We will see in the next 

lecture that this probability has peaks at particular value of y which enables us to determine the 

period p.  

 

And so therefore by repeated measurements and certain smart manipulation of the result of such 

measurement will be in a position to find the period and this as we have seen is what was our 

biggest challenge in solving the problem of factorization. So in the next lecture I will compute 

this value and illustrate it for the example that I have given that is for N = 55, and then tell you 

what is a fast method of computing the value of the period from the result of the measurement of 

the first register. 
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