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In the last lecture we had talked about a simple algorithm called Deutsch algorithm in which we 

said that if we have one qubit input with one qubit output the function being either constant or 

being a balanced function a quantum computer can determine it in one single query whereas a 

classical computer would take two equals we had just begun to introduce an extension of the 

same algorithm by Josza where the difference was that the input is n qubit input and the output is 

still a single qubit is output namely it is value could be either 0 or 1. 
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So this is shown in this slide that your function is takes n qubit 0, 1 with that simple 

multiplication n shows that an n qubit input and that is evaluated to 0 or 1 so that is my that is the 

job of my Oracle and the function is either balance or constant job of the algorithm is to find out 

which type it belongs to. I also pointed out last time that classically in the worst-case scenario it 

will take n/ 2 + 1 number of queries to determine whether the function is balanced or constant 

though we did point out that probabilistically it will probably take much less. 

 

But nevertheless the technically classical computation could involve of the order n step n/ 2 is 

same and let us look at what the quantum computer does. The first job is to prepare a input as a 

linear combination of the n qubit basics so my input is a linear combination. 
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Of n qubit computational basic state now since this is the rather important step in many of the 

algorithms let me explain this a little bit. We have seen that a single qubit when it is passed 

through a Hadamard gate for example if it is 0, then I get 0 + 1 / √2 and if it is 1 you get 0 -1/ √2. 

Now I can combine this into a single step saying that if my input is x putting it through a 

Hadamard gate will give me 0 + minus 1
x 
1/√2. 

 

So that when x is equal to 0 it gives me 0 +1/ √2 and if x equal to 1 I get 0 – 1. Now what 

happens if I have a n qubit state and I pass all of them through Hadamard gate that is a sequence 

of Hadamard gates as is shown in the slide. 
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So what I do is I start with 0 in each of my. 
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Register so I will write it as 0 n now if n of the n0 are passed through Hadamard gates then what 

do I get I simply get 0+1 /√2 for each one of them. Now if you expand this up what do you get 

there is a 1 /√2 for there so I will get 1/2
n/2

 there will be terms like 0, 0, 0, 0, 0, 1, 0, 0 etc…, in 

other words I will get a linear combination of each of the n qubit basis states and each one of 

them appearing with the same strength. 

 

So this I will write as Σx x where x is n qubit basis state so this is simply a shorthand notation for 

0000 etc. For example, supposing just to give you an idea of what happens when I start with 00 

so what happens to this when it is pass through Hadamard gate I get 1 / n= 2 so I get 1 / 2 and 

this would then be 00 + 01 + 10 + 11 and a very similar statement I can make for any numbers. 

So this is what we will frequently refer to as the uniform linear combination of n qubit basis. The 

target in which my output will come is it is set. 
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To 1 and I pass that through Hadamard gate as you know that this is 0 -1√2 now here in this 

picture I am indicating the state of the system by ψ0, ψ1, so what I do this is a very common 

nomenclature that since we have said that this is the direction of logic flow essentially it is a time 

diagram, so my initial for a starting point which is 0000 at last one being one is ψ0 when all of 

them are put through the Hadamard gate my state is ψ1. 

 

Then this thing is passed through an oracle and so the out after the oracle what comes out the this 

will be the same for the inputs but there would be a difference in the output and then ψ 2 and then 

after the first qubits are put through the Hadamard gate I will call it as the ψ4 or ψ3 does not 

matter.  
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Now let us look at what am I getting, so we have said already my input is uniform linear 

combination. 
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1/2
n/2 

  Ʃx = 0, 2
n-1

 there are total 2
n 

 number of states x, the target is one pass through Hadamard 

gate which gives me |0> - 1/√2. So what is my output, now this output is an entangled output, it 

gets entangled because the function that it calculates is f(x) corresponding to every X that is here 

but when that gets XOR with 0 I get f(x) but when you XOR it with one I get n bar of x, so as a 

result I will be writing my output as 2
n+1/2

. 

 

This is product of this with this Ʃ x = |0> 2 
n-1 

X because that part is not changed, now what 

happens here is I get f(x) because the oracle calculates f(x) XOR sit with zero and I get an F(x) 

one when it XOR it I get a bar of x. So this is what I got, now we have already stated there are 

two types of function f(x) is equal to either 0 or 1, since f(x) is equal to 0 or 1 this quantity is 

either 0-1 or 1-0. 

 

Depending upon what the value of f(x) is, so you can write this then as everything else remains 

the same, - 1
f(x) 

[|0> - |1>] So this is that phase factor that comes up because of the fact that I 

could either get 0-1 or 1-0, let us write it in a slightly different way because you notice that I can 

associate this phase factor would be the first n qubit itself because there is a -1
f(x) 

this is 

independent of X. So therefore my output can be written as.  
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1/2 
n/2 

or 1/√2 
m 

Ʃ x limits I have written ones, -1
f(x) 

 |x> and the second the target qubit is simply 

|0> - |1>√2. Now let us look at this that supposing now this first n qubits are passed through a 

Hadamard gate to show that all of them are passed to Hadamard gate that is the notation I use, 

now what will happen? Now firstly I know this is a little bit of an algebra, so firstly I know that 

when I have xi I pointed it out earlier. 

 

 Xi pass through Hadamard gate gives me |0> + (-1) 
xi

 |1>. Now there is a quicker way of writing 

this and that is equal to1/√2 Ʃ k = 0 to 1, (-1) 
xik 

or if you want it to be a little more symmetrical 

let us call it ki xi ki then ki, now you can see that this is the same because if ki is equal to 0 I get 

(-1) 
0 

and 0 if ki is equal to1 I get (-1) 
xi 

this way. So if I then expand my X is equal to |x n-1, xn-2 

etc up to X0. 

 

Then when the input to the first n cubic inputs are passed through the Hadamard gate what I get 

can be written as 1/2 
n/2 

so each one of these terms that was there, I will write it in this form. So 

therefore I will have sum over K n- 1 = 0 to 1 and like that up to k0 equal to 0 to 1, I get -1
∑x

i
k

i and 

of course Kn-1 Kj so one phase factor from each of the terms. Now I can compactly write this. 
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So 1/2
n/2

I will take care of the remaining factors later some over K, so K is simply the state so K 

is my state |Kn-1 up to K0> and this 1 I will write at -1
x.K

 now what is x.k, x.k is basically x0k0 + 

x1k1 up to xn-1 kn-1, so this is if you like bitwise product sum. So let me write it sum of brig bit y 

product x.k, something like a scalar product the way we write it |k>.  
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So now going back to my original input before I had put it into a Hadamard gate there was 

another 1/√2
n
 factor there and a -1

(fx)
 there and of course there is a ∑/x there.  
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So when I combine all this I get my output to be given by 1/ 2
n
 ∑ over x=0 2,2

n-1
 k=0  2

n-1
 (-1)

f(x)
 

which was already there,  + x.k which we just now calculated state k and of course |0>-|1>/√2, so 

this is my general expression. Now what I will do now is to evaluate this expression for the case 

for which f(x) is constant and also for the case for which it is balanced and we will see what 

comes out of it. Now let us suppose f(x) is constant. 
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Now if f(x) is constant then look at this one, so I get a constant phase factor will come out of it 

and I will refer it -1
x.k

 so the phase factor will have equal number of positive and negative terms 

because of -1
x.k

 and this will cancel out, excepting for the case for which my k happens to equal 

to 0. So therefore, for the case for which k = 0 if f(x) is constant I get -1
0
 all of them are adding 

up okay, and so therefore my first register will have the state 0, so f(x) is equal to constant.  
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The first register will be in state |0> of course in n qubits.  
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Now let us look at the same structure again for the case where the function is balanced, but this 

time I cannot actually have that simplification because there are too many terms there, but I do 

something else. Let me find out what is the coefficient that comes out with k = 0 term. If you 

refer to the slide again. 
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 You notice that if I take k = 0 then this k.x of course goes away and I am left with only -1
f(x)

 and 

∑/x=0/-1
n
, now obviously in since the function is balanced there are as many f(x) equal to one 

term as there are f(x) equal to 0 terms, so therefore this ∑ over X then notice is that there is no x 

also here, the k.x term has gone away. So that would be equal to 0, so notice is immediately that 

there is a big difference between the two cases. 

 

In the first case when the function is constant my first register will contain only the state |0> but 

if the first register measures anything else then the function must be balanced. So once again a 

single query determines whether my function was balanced or not, and that is obviously a great 

improvement over the corresponding classical algorithm. This has a very trivial extension. 
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To a problem which is known as Bernstein-Vazirani problem, now in the Bernstein-Vazirani 

problem we have an input string x = x and -1 x 0 and there is an unknown string a this unknown 

strings information is known to your oracle. And what we do is that the oracle calculate for a 

given xf(x)=a.x where a.x is the sum of the bitwise product the dimension just now, that is a.x is 

equal to this, and this is single qubit output. So therefore this is essentially a Deutsch-Josza 

problem with the change that your f(x) is a function which is equal to a.x the problem in 

Bernstein-Vazirani problem is to find out what is this unknown string. 
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Now what about classical searches the classical search requires n number of queries because I 

can evaluate what is for instance f (100), f(010) and find out immediately what are these things 

should be a n -1 a and up to a zero, so therefore it requires n number of queries. 
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Now basically what I have drawn here is the same picture as that of the Deutsch- Josza with the 

oracle being that oracle which computes for a given X a. X. 
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So let us look at that the what I have done in the second line of the slide is to rewrite that 

Deutsch- Josza expression for the output accepting that in place of the f(x), I have written a.x. So 

this is a.x + k.x now what we can do is to remember that the sum over X is only related to this 

phase dot. So we say that we are going to find out what this sum over is, now we know already 

that this is an n qubit state and this is simply -1 to the power this. 

 

So therefore this sum can be written as product over i = 1 to n and xi which can take the value 0 

or1, so -1
xi ai + ki

 because that was my definition of the bit wise. So if you perform this sum over xi 

= 0 to 1 just two terms here, when xi = 0 it is one when xi = 1 it is -1
ai+1

, so that this sum over X 

contains this factor.  
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Let me just repeat this i = 1 to n, 1 + (-1) 
ai + ki

 . So this is what some over x gave the other things 

of course remains the same. Now let us examine, let us examine what this term is like. Now 

notice there is a product of i = 1 to n, so accepting that ai = ki for each i there would be one term 

at least for which this term which is being in the product one of the terms at least will be equal to 

zero. So therefore, the ai = ki that is what will come out of it in the sum, so if I measure the first 

register then I determine what is this plain ai with certainty. 

 

So once again we have determined a classically I would not say difficult problem they are all 

reasonably simple problem in classical computing also, but what we have done is to find in a 

single query something which took many queries in classical computing. These three simple 

algorithms where illustrated to tell you about the inherent or an intrinsic power of quantum 

computation we will be later doing two major algorithms where the classical the quantum 

computer has a great advantage over classical computation.  
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