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Bloch Sphere and Density Matrix    

 

In the last lecture we had introduced the concept of a density matrix and looked at it is property 

both for pure state and for mixed states. In particular we talked about certain properties of the 

density matrix namely respective of whether it is a pure state or not mixed state the trace of the 

density matrix is equal to 1 in both cases the expectation value of an operator ray is given by 

taking the trace of the product of the density matrix with the operator ray the consequence there 

of is that if you have a pure state then the square of the density matrix is the density matrix itself 

and that is because the density matrix has a simple structure that is cat's i with bra’s i so that 

when you take a square you get the same thing back. 

 

Now that leads to trace of ρ
2
 is also equal to 1 for a your state this is however not valid for a 

mixed state because one can show the trace of ρ
2
 will be less than 1 now what we want to do 

today is to take you back a little bit and remember that for a pure state for a single Qubit  pure 

state we had a geometrical representation on a block sphere and we will try to see whether there 

is an equivalent situation for the case of a density matrix and again I am talking about the Hilbert 

space in 2 dimensions that is the mixed system of single Hilbert states. So look at what the Bloch 

sphere actually represent so what the Bloch spheres did. 
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It was a unit sphere let me say that this is the equatorial circle so I take the this as the z axis this 

as the x-axis and the y-axis now what we had said is that every state has a position on this Bloch 

sphere every single Qubit state has a position on this Bloch sphere and where is this position now 

this is decided by that supposing you take the Pauli matrix along the direction n now the state 

corresponding to ψ is given by that ray in that direction n for which s σn has an eigen value + 1 

that put our state on the North Pole to be 0 on the South Pole to be 1 and the point where the x 

axis intercepted the equator as 0 +1 / √2 etc… 

 

Now this state ψ corresponding to the Eigen value + 1 of σn was shown to be given by cos θ /2 

e
iØ 

 sin θ /2  so corresponding to this state we can calculate the density matrix. 
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So that the density  which is the product of ψ with ψ cat ψ followed by + ψ you can simply 

multiply the column vector with the corresponding row vector and show that this is given by 1 + 

cos θ /2 let me take the 1 /   2 ) e 
-iØ

  sin θ e
+iØ

   θ and 1- cos θ this is nothing but a simple matrix 

multiplication matrix direct multiplication now as I told you any 2/2 matrix can be expressed as a 

linear combination of identity matrix and the three Pauli matrices namely Σx  Σy and Σz. 

 

Now this has very simple structure so you can immediately see that this is i/ 2 which is this 1 1 

and this, this +  ½ sin θ cos Ø Σx + ½ sin θ  sin Ø Σy recall that Σx had 0 1 1 0  Σy had 0 –i i 0 so 

therefore if you expand this e-
iØ

 as cos Ø – iØ this is fairly straightforward and of course you 

have cosine θ  times Σz of course 1 / 2 again so this thing can be written as 1/2 you have an 

identity matrix there + n the unit vector n which has component sin θ cos Ø sin θ sin Ø and cos θ 

dotted with the Pauli vector Σ. 

 

So this is the you know expression for ϱ which is obtained fairly straightforward and you look at 

the components of n which gives you θ  n Ø choose a particular θ  Ø go over on the Bloch sphere 

and you can find out a position on the Bloch sphere corresponding to any state Ø that is now 

what we can do is we can now look at what happens to point this remember we said it is unit 



sphere and we talked only about the points on the surface of the unit sphere now what we want to 

do is this that we would see that the points within the Block ball Bloch sphere blog ball both 

interchangeably used terms the point inside the Bloch sphere correspond to mix states,. 

 

Now as we have already said the mix states do not have is a state representation, mixed states do 

not correspond to it a particular vector but you can write down the density matrix corresponding 

to it, but the reverse of course is not true if I have a state it corresponds to a density matrix, so 

therefore all points on the surface of the sphere also represent density matrices. 

 

But corresponding to the pure state, so what we are going to show now is that the points inside 

the Bloch sphere they represent a mixed state. So let us look at how does it work, okay.  
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So let us look at a representation of Rho which is ½ [I + now remember I had a unit vector n 

dotted with sigma but I am using a vector ‘a’ dotted with sigma, define this. Now if you do this 

definition with |a| < 1, what you can find is that this represents a state which is a density matrix 

corresponding to a mix state. 
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Now let us look at this picture, so I have said that it is representing. 
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½ [ I + a. σ] with |a|<1. 
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Look at the slide here now supposing I am looking inside the Bloch sphere, a point which is here 

which is one-third way up, see this a unit sphere one-third way up along the z-axis. Now we will 

show just now that this represents this state. 2/3 00 + 1/3 10, the point here the center it 

corresponds to ½ 00 + ½ 1, Now let us see how does it work out, so let me take Z component to 

be equal to a/3. 
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So in that case my row in corresponding to this is ½ [ I + 1/3] so z component is a/3 I have said 

and my ‘a’ is of course the sorry let me take Z component to be equal to az to be equal to 1/3. So 

this is σz/3, so this is equal to ½ [ 1+1/3] of course off diagonal elements are 0 and since σz has -

1, so this is 1-1/3 which is equal to ½( 4/3, 0, 0, 2/3) and this you can trivially show is equal to 

2/3 |0> < 0| + 1/3 |1> <1|. So this is what that point corresponds to, suppose you have to 

calculate. 
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The expectation value of let us say X component of σ this is given by Tr (σx ϱ ) by definition, so 

this we can expand it now Tr (σx  ) remember we said that the ϱ  can be written as I + well there 

was one more two there, ax σx  + ay σy + az σz, remember that σx 
2 

 is an identity matrix but σx, σy  

product is i times σz  etc and the trace of each of the Pauley matrix is equal to 0. 
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So therefore if you carry on the multiplication through you get this term will give you 0 because 

it is trace of σz  but there is a term here which is ax times σx 
2 

so therefore I get ½ Tr (σx 
2 

times 

ax ) which is equal to ax, so these are two by two matrices so therefore this is nothing but ax 

itself and likewise you can show σy average is ay, az etc, you calculate Tr (ϱ
2
 ) the trace of ϱ

2
 is 

place of (1/2)
2 

 which is ¼ + I + a. σ 
2 

expand this out again. 

 

¼ taken out, now when I expand this, by first writing a. σ as ax σx + ay σy + az σz so this is a sum 

of four terms when you take a square you would say there are too many terms but the problem is 

not that difficult because these will contain the cross terms which have product of σx, σy which 

are nothing but I times σz and trace of that will be equal to zero, the only terms which will not be 

equal to zero. 

 

Are those for which I get σx 
2 

σy 
2 

σz 
2 

in other words I will be simply left with ¼ [ I
2 

+ ax
2
 σx 

2 
+ 

ay
2
 σy

2 
+ az

2
 σz 

2 
 Tr (σx 

2
)
 
is identity, so therefore I am left with ax2 + ay2 + az2 which is nothing 

but |a|
2 

so therefore this quantity is 1+ | a|
2 

/2, the factor of 2 in the numerator comes because of 

the trace of identity matrix is equal to 2, so you notice again that since we have said |a|<1, so 

Tr(ϱ 2) for this case as expected is indeed less than 1. So therefore the point satisfies all the 



properties that you require for a mixed state density matrix, so therefore the position of a point 

inside the Bloch sphere tells you. 
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That what is its location of the mixed state, now having done that let us go over to another point 

of interest. Now as we have pointed out several times our systems are never closed systems, they 

usually interact with environment surroundings, the surroundings by definition need not be a 

very big system. For example, I could have a one qubit system interacting with another qubit 

which is of not interest of interest to me. 

 

So I talk about a system of interest which I say is A and anything which interact with it which is 

of not of my interest I call it the environment and let us designate it as system B, so in other 

words i have of necessity to deal with a composite system consisting of A and B. But my interest 

is not on this composite system, but to get or extract out of it the properties of the system A 

which is the system of interest will, now how do I do it.  

 



Now this is done by a prescription which is taking reduced density matrix. What reduced density 

matrix does is to in some sense average out the environment and the definition is shown here on 

the slide. 
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What I am trying to say is if you take partial trace of the environment, so my density matrix of 

interest ρA is obtained by taking the trace over the environment which I have called as B of the 

density matrix of the composite system. Now you can see immediately how, why it happens 

supposing you take let me work it out here. 
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Supposing you take, let us look at how what does this trace with partial TrB supposing I have  a 

trace of a thing like this, |a1>< a2|| b1>< b2| so arbitrary a1 b2 it a1, b1 extra. But, but these 

belongs to the helmet space of my interest and this is your environment. So when I say that take 

the trace partial trace with respect to this, this will give me |a1>< a2| times trace of this quantity 

|b1><b2|, now this is a number and you can see what is this. 

 

Supposing I have a basis ei in this space then what is my trace of [|b1>< b2|] by definition of 

trace it is sum of the diagonal elements, sum over ∑i <ei|b1><b2|ei> diagonal elements. Now I 

can do the following, since these are scalar products I can interchange the order, so i will write it 

as sum over ∑i<b2|ei><ei|b1| but notice that this is the density matrix corresponding to this is 

state ei and if you take a sum over ∑I, because of the completeness that gives me an identity. 

 

So therefore, this is nothing but <b2b1> scalar product. So in other words when you take that 

trace of things like this there is a simple prescription that you simply change the order and take 

the scalar product, so that is what we get.  
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So the question that you would ask is, why do I take a partial trace we have already physically 

pointed it out that taking a partial trace is required because we want to extract information about 

system of interest and we would like the environment in some way to be averaged out. So let us 

suppose M is an observable. 
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On our system A, let me say M~ this is a measurement that I do on the composite system AB, 

now obviously I am interested in making finding out the result of measurement on the system of 

interest. But however I am constrained to make the measurement on the composite system. Now 

suppose I have the basis an Eigen basis for the system A, then my composite system can be 

written as. 
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Let us say an Eigen state M so this is an Eigen state of the system A direct product with let us 

say |ψ> with represents an arbitrary state of system B. Now then since this is the Eigen basis I 

can write down my M ~ as sum over m using the spectral composition projection operator Pm. So 

in other words I am interested in making a measurement on Pm in the next lecture we will be 

talking about the how the measurements are taken. 

 

And so this thing is nothing but my M x IB where m is operated corresponding to observable on 

A. So if I take now, trace of ρa with m and I want this to be trace of ρAB with M ~ I need this 

because I have to make a measurement on the composite system in AB and M is an operator on a 

so this supposing I had a pure system this is what my result would have been, but since I have a 

composite system this is what I have. 

 

So therefore this I can rewrite as equal to trace of M x IB which is your M~ expression ρAB when 

I am taking a trace it is in my tree on which order I write it, like this relation is going to be equal 

to that relation, you can see that this is simply obtained if you decide that this ρA is given by 

taking the trace over B of ρAB. So this is this is the story of the reduced density matrix. I will 

close this session with A an example supposing I take the entangled two qubit state the Bell state 



00 +11/√2. Now you can immediately calculate the density matrix corresponding to this which is 

half 0, 0, 0, 0, + 0, 0, 1, 1, + 1, 1, 0, 0, and of course 1,1,1,1. Now remember that this is the pure 

state your stated the Bell state. 

 

Now suppose I am interested in calculating item of interest is first qubit so what do you want to 

do is to trace take the trace over the second qubit of this rho because this row was on the 

composite system. Now what do I get I have already stated that if you are taking a trace over the 

second qubit, so what would I get from here for instance this will give you there is a half outside 

let us keep it like that this will give you 0, 0 trace of 0, 0 this is corresponding to the first qubit 

and this corresponds to the second qubit. 

 

But we have just now shown that this is nothing but the scalar product of this with this which is 

equal to 1 and likewise you can write down say for example this one will be 01 and scalar 

product of one with zero which is zero. So this term is not there likewise this stuff will not be 

there but this term will be there so I will be left with half of 0, 0 plus 1, 1 what is the interesting 

thing this is the mixed state, so I started with the pure state. 
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Which were entangled states when I averaged over the second cubit the state that I got was a mix 

state density matrix that gets the density matrix you can check immediately? 

 

(Refer Slide Time: 27:16)  

 

 

 

Because by identity resolution this quantity is nothing but I / 2, so the before I leave this topic of 

density matrix which we have taken last two or three lectures it is probably appropriate to 

summarize what we have got what we said is frequently we need to talk about systems which are 

not closed, systems which are parts of an ensemble, and when that happens the original postulate 

of quantum mechanics saying that a quantum state is represented by array in the Hilbert space 

that does not hold good anymore. 

 

To take care of such systems we need to define a density matrix we obtain the properties of 

density matrix properties like trace of ρ = 1 it is a hermitian positive operator etc., and we related 

it to the expectation value or we related the expectation value of physical observables to the 

density matrix by saying for instance, that if you want an expectation value of an operator A it is 

given by trace ρA. 

 



We also talked about how to distinguish a pure state from a mix state because they are trace 

though trace of the density matrix is equal to 1 for a pure state square of the density matrix is 

equal to the density matrix itself, so these were the properties of the density matrix which we 

considered in the last two or three lectures. 
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