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Density Matrix - II 

 

In the previous lecture we had introduced the idea of a density matrix the point that we try to 

make is that in most cases that we look at in a physical system the physical system is almost 

never an isolated system that is because it is always a part. Of a bigger system and it interacts 

with it is environment and so as a result the problem is that we have to make measurements 

generally on an ensemble and the other problem is that we could have a collection of different 

systems in the same ensemble and when you make a measurement it is not necessary that we are 

picking up the same state all the time in order to take care of these things we bring in the concept 

of a density matrix.  

 

And as we will see later that the entire quantum mechanics can be restated in the language of 

density matrix which will be the more appropriate situation for talking about systems which are 

either parts of a bigger system or our members of an ensemble. So we had defined our density 

operator yesterday and so let us look at first we will spend some time on the density operator for 

the pure system where the system is described by a state vector so let us look at supposing. 
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I have a system ψ system with a state vector ψ then the corresponding density matrix or density 

operator is simply given by ψ, ψ suppose I have in this situation supposing in the Hilbert space to 

which the ψ belongs supposing this is the basis. 

 

Now emphases the basis let us look at what is the expectation value of an operator we know that 

this is simply given by ψ A ψ and if I now express the state ψ in as a linear combination of these 

basis states what we get is Σi Σj ci* cj and the matrix element of ei A ej where this cj, for is the 

basic state scalars product with ψ and obviously your complex conjugate of that which is ci* will 

be ψ with ei. 

 

Now with this let us look at how much is the expectation value be so the expectation value of A 

we can rewrite this expression by plugging in these two things and what we get is Σi Σj so we 

have got ψ ei ejψ and of course the matrix element which is ei  A ej now since these are scalars 

since these are scalars  I  can rewrite them by interchanging their orders and write it as ejψ,  ψ ei. 
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So this is equal to so expectation value of A is given by Σij so you notice this is ejψ,  ψ ei. and of 

course the matrix elements of A within the states i and j which I simply write it as this now this 

you notice is nothing but my density matrix ρ so therefore this expression is Σi  and Σj ej, ej ρ ei and 

this was ei  A ei now what I notice here is that this cat ei and bra ei are together and nowhere else 

these summation over i appears so therefore the summation over i can be shifted there and you 

notice that if you take the Σi of this quantity that is nothing but the identity operator because of 

completeness. 

 

So as a result this is given by Σj of ej ρ A ej  but some of the diagonal elements of diagonal matrix 

elements of an operator is nothing but the trace of that operator so this is trace of a ρ A so 

therefore if you know the density matrix we have proved it at least for the pure state case we will 

later on see that this is a relationship which is valid even for the general case that we will be 

talking about so this is what it is. Now taking the special case of A as an identity if you take A as 

an identity. 
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Then you notice you get trace of ρ is equal to 1 now this will see is a property of density matrix 

which is always valid irrespective of whether the state is a pure state or a mixed it mixed yet we 

have not yet defined but we will do that look at the slides here. 
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Which sort of gives you some of the properties that we have derived so far for the pure states the 

we had last time defined the density matrix for an ensemble or a mixed states as being given by 

Σi pi, pi is the probability with which the states ψ i appears in an ensemble and so therefore the 

general definition of a density operator is Ʃi the probability i times ψ i ψ i . 
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And for a pure States this obviously is simply ψ i and the expectation value of an operator we 

have just not shown it to be given like this. So with that let us go over now to the matrix 

representation of a density matrix, so obviously if I have a basis if I have a basis. 
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Let us say {ei} or whatever now I define the mn
th 

matrix elements as given by the matrix element 

of row in the states mn, so recall that row is my | ψ >< ψ |now so the diagonal matrix elements, 

are row let us say mm is em ψ then ψ em, so which is nothing but absolute value of |<em| ψ|
2 

.   

Now but however you recall that this was nothing but the definition of my probability in the 

bond interpretation of quantum mechanics. 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 08:48) 

 

 

 

So therefore this is nothing but am or cm as we wrote it cm absolute square, so this is the born 

probability of getting a state n when a measurement is made. Now that leaves us with off 

diagonal terms of the matrix elements of the density operator. 
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So these off diagonal terms, if you look at a typical off diagonal terms suppose I say m is not 

equal to n, then let us write Cm = |Cm| e 
iϕm  

we need Cm 
* 

 which is there so this is equal to |Cm| e
-

iϕm
, So therefore my M&F matrix element is< em| ψ > < ψ en> so this is simply Cm Cn 

* 
= |Cm| | 

Cn|e
i(ϕm – ϕn )

 So you notice that the off diagonal matrix elements these depend on the relative 

phases between the states m and n. 

 

And these result in the interference term, so the off diagonal matrix elements for m not equal to n 

these give rise to the interference term. So just give you some examples of a density matrix 

written in a for a single qubit system, so let us look at a state normalized state which is given by. 
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|Ψ> = suppose is write 1/ √2 |0> - i / √2 |1> this a normalized pure state, now according to our 

column vector representation this is simply given by 1/ √2  (1 and –i) So therefore the density 

matrix row is simply this product which is a matrix direct product which is equal to 1/√2 and you 

can easily multiply the corresponding matrices namely (1, -i) with the row vector (1, +i) and that 

gives you 1/√2 ( 1, i, -i, 1) notice one thing that the trace as expected is 1/2 + 1/2 which is equal 

to 1. 

 

The another point to notice is, the row is hermitian and this is again we will see is a property of a 

density matrix the Herman density of row. 
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Let us look at these slides, so the point is this that if you are looking at the density matrix row I 

can of course write it like this as I have shown it to you earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 12:35) 

 

 

 

And the diagonal elements of the density matrix gives you the boring probability of getting a 

state, the another point to notice this diagonal elements being |Cn|
2 

there essentially non-negative 

quantity, so therefore the density operator is a positive operator this is another general property 

of the density operator. 
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And the another point that we would like to make is that the density operator satisfies what is 

known as the Louisville equation, I am showing it simply in the slide it is a fairly straightforward 

algebra you should do it looking at the slide say since ψ is a state. So I have ih cross dψ/dt is 

Hamiltonian acting on ψ taking the hermitian contribute of this I get – ih d/dt(ψ| is brass i acted 

from the right with the Hamiltonian h. 

 

And if you calculate what is ih cross off the density matrix row, this is simply done by a chain 

rule differentiation and you will find it is commutator of the Hamiltonian with row itself, one 

point to notice that it does not satisfy Heisenberg equation of motion even though ρ is an 

operator, and the main reason is this that ρ is an operator in the sense that it has the mathematical 

structure of an operator. But Heisenberg equation of motions which essentially said that ih x da 

/DTis commutated of a with the Hamiltonian is valid for the case where a is an operator 

representing a physical observable. 

 

Now ρ though it has the mathematical structure of an operator it does not represent a physical of 

the pivot, and the equation that if satisfies is the liouville equation so the Schrodinger equation in 



my for the state is leads to the liouville equation for the density operator. So with this let us 

generalize to the case of a an ensemble, so in which case my ρ is sum over ∑i pi|ψψ| 
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Look at the slide, now clearly ρ is summation. And you can it takes a very trivial exercise to 

show that Tr(ρ)=1 which simply comes by taking the trace of both sides and using the fact that 

total probability sum over ∑i pi =1. Now one point is that for a pure state ρ
2
=ρ that is fairly 

straightforward you have ψ, ψ, ψ get bracket is the structure and if you write ρ
2
 then of course 1ψ  

and its bra and it's cat will come together giving me 1 

 

So therefore Tr(ρ
2
) is same as Tr (ρ) and that is equal to 1 of course. Now since it is a positive 

operator its Eigen values are non-negative. Now this property, this property that ρ=ρ
2
 is however 

not valid for the mixed state density matrix. 
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And there is a matter of very simple way to look at it that the density matrix is actually sum over 

∑ipi|ψψ| so the point to notice a mixed state does not have a state vector, but it is described by a 

density matrix just to give you a general idea let us look at the following they suppose I have a 

an ensemble which has let us at 50% in state 0. 
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And let us say another 50% in state |0>+|1>/√2 now I can individually calculate the density 

matrices for each one of them and then add them with the probabilities, so therefore my ρ would 

be the probability 1/2 times the density matrix corresponding to this which is |0> >0|plus the 

second states probability which is ½ this times <0|+<1|/√2 multiplied with |0>+|1>/√2 there you 

can open it up and write this, you notice there is a 1 over √2 up to 1 over √2 so there is a 1 over 4 

there so i get 3 x 4 |0><0|+1/4 |1><1| there are cross terms here and this cross terms are 1/ 4 

|1><0| +1/4 |0><1|. So if I now look at a matrix representation of this, this is clearly 3/4, 1/4 and 

1/4 here and 1/4 here. 

 

Look clearly that trace is still equal to 1 there are off diagonal matrix elements here, so therefore 

this is a partially mixed state why partial I will come to say it is a partially mixed state because 

the off diagonal matrix elements are there but they are not that big. For instance if you take an 

ensemble which has let us say 75% in state zero. 
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And 25% in state 1, the corresponding density matrix would be a diagonal matrix 3/ 4, 1/4 00 

notice we have reduced the amount of the strength of the optical elements, so and I have made it 

0 so this is a completely mixed state. Now the case where the, it is still diagonal but the diagonal 

elements are all of equal strength that is called a maximally mixed situation. So this is what the 

density matrix for the mixed state is about. 
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Having done that let us look at a representation of the density matrix, there is another point 

before I go over to that I would like to meet that suppose you have a situation where you find 

that ρ1=ρ2, the question is that does it imply the same state. Well, I have said that there is no 

concept of a state but does it imply the same mixture. The answer is no, ρ1= ρ2 does not. 
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Necessarily imply that the, the two an ensembles are the same this is an important point to note 

because for a pure system ψ1=ψ2 of course we have implied that the states are indistinguishable. 

And you can see it why, supposing I considered a case where 50% is in state 0 and fifty percent 

is in state 1. Now clearly this is a state in which I have got 1/2, 1/2 as the density matrix. Now on 

the other hand supposing I find I define a state in which ensemble in which 50% in state 0 +1/√2 

and another 50% in 0-1√2. 

 

You can calculate the density matrix by the definition I have given and you will find I still get 

the same density matrix. Note again that we are saying that for an ensemble that concept of a 

state is not there. So an ensemble is given by a density matrix. And the postulates which we had 

corresponding to the state vectors the postulates of quantum mechanics can be replaced by the 

corresponding postulates for the density matrix. Now you can immediately see what those 

postulates should be, so you say that an ensemble is described by means of a density matrix 

which lies in a Hilbert space in which the state vectors corresponding to the component states are 

there. 

 



The other thing is that the Schrodinger equation which every state satisfied is replaced by a the 

levels equation for the density matrix. And so therefore, this is some of the things that we need to 

talk about, just before we close this section let me give you an example from physics. Suppose I 

look at a coherent superposition of state + k and minus, so let me take a state size = 1/√2 plus k + 

-k.  
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That is equal momentum equal and opposite momentum added with the same. So you can 

calculate what is the density matrix corresponding to this, and find out what is the corresponding 

wave function, the wave function as you know is the projection of these states on to the position 

space that is the real space and you can calculate the probability of the density at point x, so 

which is given by remember that it should be corresponding to the density operator rho and of 

course the position operator XX for those of you who are not familiar with this part of physics 

can skip next couple of minutes. 

 

But this is given by X by definition of the trace X and you can simply plug these numbers in size 

rho size calculate this and show that this quantity is equal to 1+ cosine of 2 KX which obviously 

shows fringes that is because the intensity keeps on varying sense of that. Now if you took any 



incoherent superposition that is instead of doing this, so we take for example a density matrix 

which is given by remember that when we have incoherent superposition I cannot define a state. 

 

So this is 1/2 kk + -k,-k repeat the above calculation with this and you can find that PX will turn 

out to be equal to 1and there are no fringes here. So what we have done today is to define the 

density matrix corresponding to both pure state and an ensemble of pure states which are called 

next states and found stated that the when we look at systems which are collection of different 

types of systems different states an ensemble of different states. 

 

What we need to do replacing the state vectors with this statements about the density matrix. We 

have related the expectation value of an operator to the trace of the operator multiplied with the 

density matrix. We have also pointed out the interpretation of the both the diagonal and off-

diagonal components of the density matrix and we have seen that the density matrix is not unique 

in the sense to different ensembles could have the same density matrix. In the next lecture we 

will be looking at the relationship that the density matrix has for the single qubit systems with 

the Bloch sphere which we have discussed earlier. 
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