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In the last lecture we had discussed super dense coding. We had pointed out that the coding or 

the dense coding or super dense coding arrows out of the desire by Alice of sending some 

classical information by sending a lesser number of quantum bits to Bob the in this lecture and 

the next one what we intend to do is to talk about the real systems which one actually considers 

see when we stated the laws of quantum mechanics or the postulates of quantum mechanics it 

was assumed that we are talking about a closed system. 

 

A system which is there by itself does not interact with outside systems in other words our 

definition of the system was a self-contained system now generally what we consider our are 

study are much larger systems now what happens when we study much larger systems are the 

following one our first postulate was that the states are represented by raised in a Hilbert space 

now that postulate may not hold good. 

 

And as I go along I will sort of explained by giving examples of why I am making that statement 

the second thing that we talked about, so far was that we talked about measurements in a 

computation all basis or even other basis but basically the measurements which are orthogonal 



projections on to your basis states, now that may not necessarily be applicable the third thing 

which we assumed is the big evolution is unitary now this postulate also may break down when 

we do not consider closed systems or what we will be talking as pure system. Now let us see this 

with an example. 
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So this is what happens now just to give you an idea is the following. 
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This open systems is essentially a collection of system, so let us just forgiving you a trivial idea 

consider it to diminutions  one system whose basis states are xy it could have been 0 1 it does not 

matter and supposing I have an ensemble I am a collection of states but the states are not of one 

type so I have a state or type of state which have their state vector ψ as α times x + β times y you 

could have taken them α times 0 + β times 1 it does not  matter you have another type of state 

there which is in the same basis written as γ  times x + 𝛿 time y. 

 

The supposing I had n number of states in the system then n times p, p is the probability n times t 

is the number of states in the first category and n time 1 -p is the number of states of the second 

category another question that we ask now is that supposing we measure this system in a 

computational basis 0 and 1 or x and y in this case. What is the result that we would get? 
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So the point here to notice the following that what is meant by a measurement in this case now 

when I make a measurement what I have to do is to pick up one of the state's belonging to this 

ensemble now when I pick it up whether it belongs to the state ψ or it has a state Ø that is 

determined by the probability with which I might mixture or the collection was better but that 

was a classical probability. 

 

So I said p is the probability that in my collection the state that appears is ψ and 1 – p is the 

probability that the state that appears is Ø so when I make a measurement I need two things I 

pick up a state and I know with probability p to b ψ and with probability 1 –p to be Ø having 

done that I would make a measurement of the that picked up state in the computation basis so 

what would I get so let us return come back here. 
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So let us suppose I have is a state ψ and that we have said is α  x+ β y and it could have been a 

state Ø  which is γ  x + 𝛿 y now when I picked up at random if I happen to have got this state ψ I 

then my probability that my state collapses to let us say x now this is given by p times α
2 

now 

this is provided I have picked up the state ψ but if I happen to have picked up the state Ø which 

is done with the probability 1-p and the probability of getting state x here is γ
2 

so this is the 

product of two types of probability. 

 

This is a classical probability p and (1-p) and this is the Born probability and these this p and (1-

p) they are classical, obviously the probability that it collapses to a state |y> is given by P times | 

ß|
2 

+ (1-p) | δ|2.  So when you consider a general system which is not which does not contain 

only one type of states this is the extra considerations that comes in. Consider on the other hand a 

composite system now supposing I have a composite system. 
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And let us suppose the composite system I will call as A x B and the corresponding Hilbert space 

is HA x HB, now suppose I have ΨAB  as a state in this Hilbert space, now if it so happens that ΨAB  

factorizable, remember we are using the word entanglement we are saying if this be if the states 

are not entangled. 
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Then I can write ΨAB as product of |ΨA > with | ΨB > now when such a thing happens if I 

consider an operator, supposing O is an operator OA is an operator quit measure some property 

of system A, then what I am trying to do is ΨAB  | OA ΨAB  > now since this is this acts only on A 

and this is factorizer, I can write this OA as product of OA direct product with IB where I is an 

identity operator on B. 

 

And then this will give me <ΨA| OA |ΨA > multiplied by ΨB IB ΨB but that is equal to 1 by 

normalize sum of the ΨB, so this is what I would get. So in this case the system behaves like a 

pure state, so the there is no entanglement so no entanglement the composite system behaves like 

a pure state, now notice if the system does not allow such factorization the usual nomenclature 

uses. 

 

Supposing A is my system of interest and B is an environment, by the word environment we 

mean any system with which the system A interacts. It need not be a big system it can be as 

small as the system A itself, so if the interaction is such that the wave function does not factorize. 
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Then the above argument does not work and we need to extract information about properties of 

system A by a different idea, such systems are known as mixed system, mixed state. Now what 

we are going to do, in this lecture and the next is to talk about the postulates of quantum 

mechanics, as they need to be modified for such mixed system.  
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Continuing with our example, let us consider a very trivial case of a composite system which is 

entangled. So I am what I have done is to take ΨAB. 
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Is equal to suppose I write it as some constant times 0A, 0B, so I am taking a single qubit state to 

be both A and B and so the base is 0 and1 in both, but this is a composite system, so I write this 

as this plus let us say 1a 1b, this is obviously not factorizing. So the question is this that, how do 

I calculate? Supposing I have an operator in the state space of A and B is an identity, now this is 

the operator which I am interested in calculating the expectation value. 

 

So how does one what is in other words I am interested in finding out, what is ΨAB, MA x I B ΨAB. 

So let us do a bit of a an algebra with this same example and look at it the following way. 
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So well I have written this ψAB like this and we are going to consider what is the expectation 

value of this operator. I will do a bit of a formal arithmetic here. 
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So we have <ψAB |MA xIB|ψAB> so let us expand this out, so we have said already this is A00+ B 

11, so this is the [ so therefore I get a* <0A|0B+b*<1A|1B|> then I have my operator stand which  

between bracket and then I have got [a|0A> |0B>+ b|01A>|1>B] I can just multiply it through and 

get four terms there. Let me write down the non vanishing terms first, so I have got a*xa which 

is |a|
2
 I have got <OA 0A |MA| 0B> now if you look at it I have an IB there, so I have got 0B IB 0B 

let us write it for formality <0B |IB| 0B> this is should be 0A+ |b|
2
 similar term <1A|MA|1A> 

multiplied with <1B|IB|1B> there if two modems.  

 

So notice that these terms are one because IB does not do anything just keeps OB and this is 

normalized and this term is also 1. So what I get here is I will come back to the two terms which 

I have dropped <0A|MA|0A>+ |b|
2
<1A|MA|1A> now what about the terms I have dropped, the 

terms that I have dropped are the cross terms, terms dropped so the cross terms for example are 

a*b<0A|MA|1A> multiplied by <0B this is one of the terms |IB| 1B>, so this is clearly 0, because IB 

acting on 1B does nothing and then by orthogonality this is 0. 

 

The other cross term also becomes 0, so this is the result I have got. So what is this thing 

compactly. 
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So this is nothing but a
2
 times the diagonal matrix element of MA + b

2
 times the diagonal matrix 

element of MA in state 1. So if I define, if I define ρA 
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You can look at the slide which is also there, so I define ρA as. 
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|a|
2|
0A> 0A|+|b|

2
|1A><1A| is an operator. Remember, that a kit followed by a bracket is an operator 

this is an operator. So if I define this way, then what I have got here is to write this expectation 

value as trace, trace is nothing but the sum of the diagonal elements. So trace of ρA with MA with 

this definition. 
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This is what it works on, you can simply plug in this ρA into my previous expression and get this.  
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So this operator that I have defined here, this is called the density operator this rho a this is my 

density operator for the subsystem a also known as density matrix these are interchangeably 

used, we have already pointed out several times that any operator can be expressed in a matrix 

representation, so these are known as the density operator. Now to look at what is the difference 

between the two consider the following things. 
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Let me first give you an example, so of a pure state, a pure state is a coherent superposition of 

the basis States for them. So let me take ψ to be given by 1/√2, 0 + 1 this is what we have been 

talking about several times. Now supposing I take this state and calculate what is the expectation 

value of for instance σx operator, now you can immediately do this because this 1/2 because a 

brand they get each one will have a so I have √2. 

 

So I have this that, I have 0+1operator σx acting on the state 0 +1 we know that σx changes a 0 to 

1and 1 to 0, so therefore this becomes 1 and this becomes 0 just multiply them this, this term this 

into this becomes 0 this into this is 1 into this is 1, so that is 1 plus 1 is 2 by 2 that is equal to 1. 

Now however supposing instead of this coherent superposition I had a equal superposition equal 

mixture if you like off state 0 and 1. 

 

Now what is the difference, the difference is that this is the pure state quadrant superposition 

here what we have to do is to look at it I have a collection in which I have states 0 and state one 

in equal mixture. 
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So when I calculate the expectation value I pick up one of them and that will be of course picked 

up with some probability in this particular case it will be probability of ½. So I will calculate the 

σx expectation value this way either probability ½ of picking up the state 0 so it is ½ of 0 σx 0 

and an equal probability of picking up a state one and since σx converts a 0 to 1 and this is 

orthogonal so I get 0 + 0 = 0. 

 

So this is the difference there that this is the coherent superposition this is an equal superposition 

of the states. 
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Now so let us look at how does it work? Now in this particular case if you are looking at the 

density matrix. So look at the density matrix for the equal superposition case the, for the equal 

superposition case I have got 1/2 that was the probability and I have 00+11. So this is now since 

my basis state only has two elements the, this by completeness theorem is 1, so I got this is 

actually it should be I / 2 because completeness theorem gives me this has an identity operator. 

 

So this I should write it is I / 2, I will show in the next lecture that whatever result we proved just 

now for σx that if I have an observable A and a corresponding operator A, then expectation value 

of A turns out to be trace of rho times A. 
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We will go through in our next lecture the properties of the density matrix and its importance in 

discussing systems which are composite systems or open systems. 
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