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Hello. Let us recapitulate what we did in our last lecture. We had an idea of looking at 

the conservation laws, which are obeyed in all the inertial frames as per the postulate of 

special theory of relativity. So, we were looking for a new definition of momentum, 

which could satisfy that particular criterion namely, that is momentum is conserved in a 

given frame; it should be conserved in all the frames. When we were looking at that 

particular aspect, we realized that the conservation of momentum critically depends on 

the fourth component of what we originally called as momentum four vector.  

Then we tried to reinterpret that particular fourth component and invoked that, that is to 

be called as the energy of the particle; which was a totally revolutionary and totally 

different concept of energy, which does not have a classical analogue. So, this is what we 

discussed and we said that this particular four vector is now re-termed as momentum 

energy four vector. So, this is what is recapitulation? 



We discussed the energy-momentum four vector. Then in this process, we gave a new 

revolutionary definition of energy; we did not have any classical analogue. And of 

course, as a consequence, we arrived at a new definition of momentum. So, we had a 

new definition of momentum; we had a new definition of energy. Of course, the 

definition of momentum in the classical limit meaning that, the particle speed is much 

smaller than speed of light, will reduce to the classical definition of momentum. But, the 

same will not be true for the energy definition, because energy was a totally different 

concept altogether.  

We were said that, if a particle is at rest, that particular particle also has some energy, 

which we call as rest mass energy. And, the kinetic energy we defined as only the 

additional amount of energy gained by the particle when the particle starts moving. So, 

this was totally a revolutionary concept. And, this had such a great amount of impact 

even on a common public that, people started almost naming Einstein by E is equal to m 

c square; E is equal to m c square became synonymous with Einstein. People even know, 

who may not be understanding physics; they are still aware the glamorous relation of E is 

equal to m c square. 
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Then we gave the relation between the energy and a momentum of a single particle, 

because once we have to solve the problems, we have to start looking at the relationship 

between the energy and the momentum. And, some of the problems we are going to 



describe today. Then we also discuss a totally new concept, which was not existent in the 

classical mechanics, because in classical mechanics, a particular particle has to have 

some finite mass. Here we considered, we imagined a particular particle, which could 

have a zero rest mass; and that particular particle could also have energy and momentum. 

The only condition is that, in that particular case, the particle must move with the speed 

of light. So, this was again a new concept, which came out from this special theory of 

relativity of a particle with zero rest mass. 

Now, today, what we will be doing; we will try to work out some of the problems about 

the collision; and specifically, we will revisit the earlier problem of the collision, which 

we had started with. As a consequence of which we had decided that the conservation of 

momentum will not be valid in all the frames of reference unless we redefined the 

momentum. That is the way we had started if you remember, how we lead to new 

definition of momentum. 
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So, let us look at this particular old example, which is here. Just to remind you that, what 

we had discussed in our earlier case that, there was one particular particle m, which was 

moving to the right-hand side, which we can call as a plus x direction with a speed of 0.6 

c. There is another particle, which is also of mass m, which is moving to the left-hand 

side with the speed of 0.6 c. These two particles collide with each other and eventually 

gets stuck to each other. So, after collision, you have a combination of the two masses. If 



we remember the example, which we had given earlier; and that time we did not have a 

new concept of rest mass; we did not have a concept of new energy. At that time, we had 

just talked about one mass, because mass was sort of that sense, essentially sort of 

universal. So, we had said in that particular case that, of course, in this particular 

example, when we look at this particular frame of reference; then we do find that, 

momentum is conserved, because here the initial momentum is 0; and after the collision, 

the final momentum is also 0. Therefore, momentum was conserved. 

Then, we transformed the frame of reference and went to the frame of reference of this 

particular particle. It means we assumed another frame of reference in which the particle 

is at rest or the frame of reference is moving with a speed of 0.6 c along the plus x 

direction. Then we applied the velocity transformation that we had derived on the basis 

of Laurens transformation and tried to find out the speeds of these particles in that 

particular particles frame of reference, which we called as S prime frame of reference. 

Then we discussed and we found out that, the momentum was not conserved in S prime. 

That is where we have arrived at this particular conclusion that, momentum needs to be 

redefined. 

Now, let us look at this particular problem again in the light of the new information that 

we have got regarding momentum and energy. So, what I would sort of rephrase this 

particular problem now that, we will assume that, this particular particle – the mass m 

that I am talking is m naught, which is the rest mass of the particle. So, there is one 

particular particle, which has a rest mass m naught, which is moving to the right with the 

speed of 0.6 c. There is another particular particle, which has a rest mass m, which is 

moving to the left-hand side with the speed of 0.6 c. Let us not talk about this particular 

thing. Remember this particular picture I have taken just from that old example. In fact, 

this picture would probably require modification once we have described this particular 

problem. This is the way we had described it earlier. 

Now, let us look into the new definitions and try to work out the same thing and try to 

really convince ourselves that, if momentum is conserved in one frame, it has to be 

conserved in the other frame also; which we did not in the earlier case when we did not 

have the knowledge of new definitions of energy and new definition of momentum. So, 

initially, what will do, we will look at this particular frame only for here this particular 

collision has been described. So, I assume that, there is a particle with mass – rest mass 



m naught, which is moving to the right with a speed of 0.6 c; and another particle with 

rest mass m naught moving to the left with a speed of 6 c. And, let us try to write the new 

values of the momentum that I will obtain from this particular case. 
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Now, if we remember, the new definition of momentum was p is equal to gamma u m 

naught u. So, basically, differs from the classical definition, because there is also a 

gamma u vector. And, this gamma u as we know, is related to the particle velocity, 

which is given by under root 1 minus u square by c square. So, here we have a collision 

of two particles; and each is of rest mass m naught. So, what I will be doing; first, let me 

try to calculate the momentum of the first particle and then I will calculate the 

momentum of the second particle as given in this particular frame of reference. 
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So, this is what I have written here. So, this is the momentum of the first particle, 

because it is particle. So, I have written 1. And, this is the particle, which is moving to 

the right with the speed of 0.6 c. Now, this is the expression, which again I have just 

written; which is m naught gamma u times u, which is the new definition of momentum. 

(( )) let me calculate gamma u. As we have just now seen, gamma u is equal to 1 upon 

under root 1 minus u square by c square. And, if I substitute the value of u is equal to 0.6 

c in this particular expression, we know that, this expression would lead to a value of 

gamma u is equal to 1.25; u is equal to 0.6 c is one the speeds, which leads to a rather 

simple result, a simple answer for gamma u. So, gamma u will turn out to be 1.25. So, 

that is what I have written here. This is the value of gamma u, which is 1.25. I have 

slightly reorganized this equation to express momentum in the units of m naught c. So, 

this speed u is 0.6 c and this is m naught. So, this becomes 1.25 multiplied by 0.6 m 

naught c. If I simplify it, this becomes 0.75 m naught c. 

Now, the second particle is also moving with the same speed of 0.6 c. But, it is moving 

in the minus x direction. Therefore, this momentum has to be negative. Momentum is a 

vector quantity; it has to be negative, because sign is opposite to it. So, we use the 

exactly the same expression minus m naught gamma u u. Again gamma u is 1.25 and 

speed is 0.6 c and the m naught. So, I get same numerical value, but with a different sign. 

So, particle – second particle’s momentum is minus 0.75 m naught c. Of course, the y 

component and z component we need not bother, because in that particular direction, the 



momentum is anyways 0. We are assuming that, the motion is only along the x-direction. 

So, this is what I have found out that, are the initial momentum of the particle number 1 

and particle number 2 before collision. And, as you can see that, magnitude wise, both of 

them are same; only their signs are different. So, if I add these two momenta, these two 

momentum would lead me a 0 value, which we had expected even earlier that, the initial 

momentum of the two particles, sum of the momenta of the particles would be 0. 
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So, this is what I have written in the next transparency that, p x k; where, k of course, 

gets added up for the two particles from 1 to 2, is equal to 0. And, this I symbol refers to 

the fact that, this is the initial momentum, which is before the collision. So, clearly, (( )) 

the initial momentum and final momentum obviously 0, because if I look back at this 

particular equation, p is equal to gamma u m naught u. And, if u has to be 0, then of 

course, p has to be 0. And, because in this particular frame it has been given that, after 

the particle get stuck, they come to a rest. Therefore, this u must be 0 in that particular 

frame. Therefore, p is also 0. So, clearly, the momentum after the collision is also 0. 

Therefore, the momentum is conserved. This is what we had expected that, momentum 

should be conserved in this particular process. 
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However, there is a different situation now. If you remember, when we worked out this 

problem earlier or when we work out a similar problem in a classical mechanics – 

traditional classical mechanics, we said that, this is an inelastic collision; and therefore, 

we never used to conserve the energy at that time. We at that time said, it is only 

momentum, which is conserved; energy is lost in some non-mechanical processes. In 

fact, we always meant that, overall energies never sort of disappearing; it is always 

conserved. But, what we mean at that particular time is of mechanical energy that, if you 

are taking potential energy and kinetic energy, those types of energies, the mechanical 

part of the energy; they are not conserved, because the energy is lost in some non-

mechanical form like heat or whatever it is. So, we were never conserving the energy at 

that particular instant of time. 

But, now we realised that, with the new definition of energy and momentum, the energy 

must also be conserved in this process, because remember, the conservation of 

momentum, universality of conservation of momentum depends critically on 

conservation of energy. So, unless energy is also conserved, momentum will not be 

found to be conserved in other frame. So, in this particular frame also, I must conserve 

energy, but with a new definition of energy and not the classical definition of energy, 

which involved only the kinetic energies. So, we conserve the energy. Therefore, I must 

write the energy of the first particle and energy of the second the particle. If I write the 



energy of the first particle, the expression is E is equal to m c square, which is the well-

known expression. 
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And, this m we have said, is gamma u times m naught, where m naught is the rest mass 

of the particle. So, if I have to write the energy of the particle, which is total relativistic 

energy of the particle, then what I have to use for E is gamma u m naught c square. So, 

this is what I have written here. For the first particle, E 1 is equal to m naught gamma u c 

square. Gamma u we just now discussed is 1.25. So, I put it 1.25; I get this equal to the 

energy of the first particle as 1.25 m naught c square. The second particle also moves 

with the same speed.  

Therefore, the gamma value is again 1.25 though its speed is in negative direction. But, 

the energy is a scalar quantity. Therefore, I will not put a negative sign. It is the same 

energy, which is 1.25 m naught c square. Therefore, the total initial energy E – 

summation of E k I must be equal to this energy plus this energy; which means 2.5 m 

naught c square. So, what it says that, the initial energy of the system of the particle of 

the two particles was 2.5 m naught c square. And, I now want that, after the collision, 

again this energy should remain same. It means the combined particle, which has got 

stuck should also have the same energy of 2.5 m naught c square if this particular particle 

has to obey the conservation of energy, which we expected to be obeyed the according to 



the new rules of energy and momentum conservation. But, if I take the earlier 

expression, where I have assumed that, the two masses just gets stuck. 
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And, remember in that particular picture, I had drawn two masses and I have written 2 m 

at that particular point. Then this 2 m obviously cannot have energy of 2.5 m naught c 

square, because the particle at rest. But, essentially, it means that, this is not correct. 

When the two particles have got stuck to each other, of course, there is u, is 0. So, when I 

write the total energy E, gamma u is 1, because this is 1, because the particle is at rest. 

Therefore, this energy must result with a different m naught. It means the rest mass of 

the particle has changed. And, this gamma u m naught c square should be equal to 2.5 m 

naught c square, which I have written earlier. What it means that, after the particle have 

got stuck though they have come to rest, but their rest mass energy would have gone up, 

because this gamma u being 1, this means m naught is equal to 2.5 times m naught. So, 

the two particles once they have got stuck, their mass is no longer 2m, but it has become 

2.5 m naught; their rest mass has gone up. 

Why rest mass has gone up? How you would explain on the basis of relativity? You will 

say that, that energy, which was lost; it was lost into some non-mechanical form of 

energy. But, as far as E is equal to m c square is concerned, that does not look into that 

particular aspect, because overall energy must be conserved. And of course, that energy 

is no longer of the kinetic form. Therefore, u is still 0; gamma u still equal to 1. But, that 



infest; that particular energy shows itself in the form of an increased rest mass, because if 

the masses have become probably warmer, because of the collision, because of the loss 

of energy, this eventually result in its increase of rest mass. So, what it shows that, the 

two particles after they have got stuck to each other, their rest mass has gone up. That 

must be true if momentum and energy – both have to be conserved in this particular 

frame of reference. 
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So, this is what I have written here. Hence, the final energy should also be the same even 

though the speed of combined particle is 0. So, gamma u is 1. So, 2.5 m naught c square 

must be equal to new M naught c square, because gamma u is equal to 1; which 

obviously means that, M naught is equal to 2.5 m naught; the rest mass of the particle has 

gone up. 

This is what I have written here, is the rest mass of the combined particle has increased. 

And, M naught – the new rest mass of the particle is 2.5 times m naught. See remember 

that is what we have said that, if the two particles gain certain energy, then this rest mass 

goes up. If they lose certain amount of energy; if they tend to become cooler, then again 

their rest mass will go down. That is what is the new way of looking into the energy. Say 

as we said that, there is no difference between the energy and mass in relativity; mass 

and energy are related by fundamental constant c square.  

If system has more energy, it has more mass; if system has a lower energy, it has a lower 

mass. Mass and energy are always related. In fact, as we have said earlier that, you can 

express energy in terms of masses or mass in terms of energy. So, many times, when we 

say, the mass of electron; many times we will tell within the unit of MeV or mass of the 

proton in terms of the MeV or GeV; while mega electron volt, giga electron volt – these 

are the units of energy and not of mass. But, then still we can express them, because the 

two are related with a fundamental constant c square. 
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Now, let us look at the S prime frame of reference, because that is the way we have 

started. From S frame, we concluded that, the rest mass of the particular particle has 

gone up after the two particles have combined with each other. Now, remember this rest 

mass is a four scalar. So, this rest mass is not going to change even I go to S prime frame 

of reference. So, I must use the same rest mass of the particle even after I change the 

frame of reference from S to S prime. But, now, let us recalculate the momenta in S 

prime frame of reference. When I try to recalculate momenta, of course, the values of 

momenta individually will be different. But, eventually, momentum must be conserved 

and energy must be conserved, because I expect the conservation principles to be 

universal. So, let us go to S prime frame of reference. 
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So, let us look at the velocity of the first particle just before the collision. Remember we 

have two particles in S frame: one going in this way; another going this way. Now, I go 

to a frame of reference of this particular particle. It means I go to a frame in which v is 

0.6 c. Now, looking at this particular frame of reference, I go to this particular frame of 

reference with v is equal to 0.6 c. Calculate the speed of this particular particle, which 

obviously should be 0. Calculate the speed of this particular particle. Find out the total 

initial momentum. Then again, I look at that particular particle, which has been obtained 

after the collision. Find out the speed of that particular particle. Calculate the momentum 

of that particular particle. And, try to see whether I get the conservation of momentum 

and energy. That is what I want to do.  



So, I go to this particular frame of reference S prime, which has v is equal to 0.6 c. First, 

I look at this particle itself for which u will be 0.6 c. I apply velocity transformation. So, 

this is what I have applied here. So, u 1 x prime is equal to u x minus v. So, u x is 0.6 c; 

v is 0.6 c; 1 minus u x into v divided by c square. Both u x and v are 0.6 c; c square gets 

divided. So, I get 1 minus 0.36; c square gets cancelled out. And, because numerator is 0; 

so u 1 x prime is 0, which is expected, because once you go to the frame of that 

particular particle, the speed of that particular particle must be 0. If you are in a frame, 

you do not notice its own speed with respect to anything. According to you, the speed of 

the frame is 0. So, obviously, u 1 x prime is 0. 
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The momentum, then of course, is 0, because we have just now discussed, if the speed of 

the particle is 0, the momentum is 0 even with the new definition of momentum. So, 

there is no problem over there. So, momentum of the first particle is indeed 0. But, let us 

look at the momentum of the second particle. That will not be 0. So, let us find out the 

speed of the second particle. 
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We use exactly the same expression. I write u prime 2 x. Now, for the second particle, 

the particle was moving to the left with the speed of minus... with a speed of 0.6 c. So, I 

write u x as minus 0.6 c; minus v, which is same – 0.6 c, because I am going to same 

frame of reference of the first particle divided by 1 minus u into v x, because of negative 

sign. This will become plus. And, this expression will remain as 0.36, because both u x 

and v are 0.6 c each; c square will cancel. So, you get the speed as minus 1.2 divided by 

1.36 c. This calculation we have done earlier also when we had done this particular 

example earlier. Only thing, at that time, we had used the old definition of momentum; 

now, I will be using the new definition of momentum. So, using this particular u, I must 

calculate now gamma u, because the new definition of momentum not only involves the 

speed and mass, but also involves gamma u. So, let us calculate gamma u. This is being 

little longer, little big; you will find out that expression little bit more complicated. But, 

eventually, the result is simple. 
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So, that is what I have written. The momentum of the second particle before collision is 

thus. 
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This is the gamma u value 1... So, not the numerator here; but 1 divided by under root 1 

minus u square by c square. The speed was 1.2 divided by 1.36 c. So, c square and c 

square cancels. So, in numerator you are remained with just 1 upon under root 1 minus 

1.2 divided by 1.36 square. 
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Let me just rewrite here just to make it clear. So, you have p 2 x prime, must be equal to 

gamma u m naught u. Now, this gamma u I can write as 1 upon under root 1 minus u 

square by c square. This was 1.2 divided by 1.36 c divided by – of course, you squared – 

divided by c square will cancel. What will remain is this square. This is m naught. And, u 

will become 1.2 divided by 1.36 c. So, what I have done in this transparency, I have 

brought this particular thing up into the numerator to express this in again the units of m 

naught c. So, this is what I have written here; p prime 2 x is equal to minus 1.2 divided 

by 1.36 divided by under root 1 minus 1.2 divided by 1.36 whole square m naught c. 

If you calculate this 1 upon under root this particular gamma u value; that turns out to be 

equal to 2.125. This multiplied by 1.2 divided by 1.36. Eventually, you can calculate; 

this will give me a value of minus 1 875 m naught c. You remember this is minus, 

because the speed of the second particle was negative. If you just look, this speed is 

negative, because if you are sitting on the first particle, the second particle moves in 

minus x direction. So, we now realised that, once we go to the S prime frame of 

reference, then the momentum of the first particle is 0, but not of the second particle. 

And therefore, the initial momentum is not 0. 
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The initial momentum, which is the sum of the momentum of the two particles is equal 

to minus 1.875 m naught c. So, what we find? That the total value of momentum has 

changed once the frame has changed; which is obvious; which happens even in the 

classical mechanics that, once you change the frame of reference, you do find that, the 

speeds will change; and therefore, momentum will change. So, in S prime, this is the net 

momentum. Now, if whatever I am saying is correct, then with the new definitions of 

momentum, this should also be the momentum of the final particle, which is a combined 



particle. But, for that combined particle, I must use now a different rest mass, which is 

2.5 m naught, and not 2 m naught. 

So, let us look at the velocity of the combined particle after the collision. In S frame, 

which has the original frame in which we described the problem, this particular particle 

after the collision was at rest. So, it means u x was 0. And, we are going to a frame of 

reference with v is equal to 0.6 c. Therefore, this will be 0 minus 0.6 c divided by 1 

minus u x v divided by c square; 0 multiplied by 0.6 c divided by c square. This term 

becomes 0. So, denominator becomes 1; and this is just equal to minus 0.6 c. Again, this 

particular result I had obtained even earlier when we had discussed this problem for the 

first time. This is the final speed. That is why I have written f here. 
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Now, I have to calculate the momentum of the combined particle. When I write the 

momentum of the combined particle, then in that particular case, I have to use this new 

speed and calculate its gamma; then multiply it by m naught; then multiply it by u. 
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Now, this is 0.6 c. And, 0.6 c we have just now discussed, gives me a very clean value of 

gamma u, which is 1.25. So, gamma u is 1.25. The speed of the particle we have just 

now calculated is minus 0.6 c. This is what we have just now calculated here. It is minus 

0.6 c. So, this is minus 0.6 c and m naught; where, this M naught is now the new M 

naught, because this M naught is scalar once I change; it is a four scalar. Once I change 

from one frame to another frame, this M naught is not going to change. So, for this M 

naught, I must use 2.5 m naught. Once I use this as 2.5 m naught and substitute these 

values and multiply, I indeed get minus 1.875 m naught c.  

See you realise the trick here is to put M naught is equal to 2.5 m naught, which 

essentially comes according to the relativity from the conservation of energy; and as we 

have discussed that, conservation of energy is must in order to see conservation of 

momentum. So, we just now saw that, now that problem is solved in S prime frame of 

reference, also the momentum is conserved. Let us look at the energy whether in S prime 

frame of reference, even the energy is concerned. It should be for everything that we are 

saying is correct. So, now let us check whether energy is also conserved in this particular 

frame. 
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You go to S prime frame of reference and calculate the energy of the particle. How do 

we calculate the energy of the particle? Let us take the energy of the first particle. When 

we take the energy of the first particle, this particular particle was at rest. So, we have 

just now written E is equal to gamma u m naught c square. Now, once I go to the frame 

of reference of the first particle, then of course, gamma u is 1. We call the speed of the 

particle itself is 0. Therefore, this E is just equal to m naught c square. So, the energy of 

the first particle is equal to E is equal to just m naught c square. For the second particle, 

the speed is not 0, but it is minus 1.6 divided by 1.36 c. So, using that particular value, I 



must calculate gamma, which I have actually done earlier. So, that gamma u multiplied 

by that m naught, which is the rest mass of the second particle multiplied by c square; 

that would give me the energy of the second particle. 
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So, this is what I have written here in the transparency. First particle is just clean m 

naught c square, because this particle is at rest in S prime frame of reference. It is the 

second particle, which is moving in S prime frame of reference; and it is moving with its 

speed of 1.2 divided by 1.36 c; c square, c square cancels out. So, gamma is this much, 

which we have just now calculated. In fact, we have not calculated, but we have just now 

told that, this particular gamma u turns out to be 2.125 of course, multiplied by m naught 

c square. So, the total initial energy becomes 3.125 m naught c square. So, this is the 

total initial energy of the system. 

Let us look at the final energy. As far as final energy is concerned, you have only one 

single particle now with a rest mass of capital M naught. And, that particular mass is not 

at rest in S prime frame of reference, but moves with a speed of minus 0.6 c, which we 

have just now seen. So, when I calculate gamma u for this particular particle, I should 

use 1 divided by under root 1 minus... This is speed of the particle, which is 0.6 c. And, c 

square of course cancels out. 
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So, I get this gamma u, which I know is 1.25. So, for this gamma u, I will put 1.25. This 

m naught we have just now seen is the four scalar, must be equal to 2.5 m naught – small 

m naught times c square. You indeed get that, the total energy of the system is 3.125 m 

naught c square. So, we do find that, energy is also conserved. So, we worked out the 

same problem and tried to relook at the energy and momentum of conservation. And, we 

do find that, energy and momentum – both are conserved in S as well as the S prime 

frame of reference. 
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Let us look at another simple example, which is somewhat similar example. But, still I 

have chosen to describe this particular example of another inelastic collision, because 

this is the type of problem in which we will use the energy momentum conservation, 

which I had not used in the first problem. The first problem was more to illustrate that, 

the new definition of energy and momentum that we have now obtained, will lead to 

universality of energy and momentum conservation. Here I want to give an example, 

which is more like a problem in which we have been asked to calculate certain specific 

things. And, for which, I may require translating (( )) energy and momentum, knowing 

energy and momentum, calculate its speed, calculate momentum and (( )) – all those 

things. So, let me describe this particular example. So, there is a particular particle of rest 

mass m naught and it has a kinetic energy of 6 m naught c square. What has been given? 

Remember it is kinetic energy.  

So, you should be careful when we are talking of kinetic energy and when we are talking 

of the total energy. So, of course, it has a very high energy, very high kinetic energy, 

because this is 6 times its rest mass energy. So, this particular particle strikes and sticks 

to an identical particle at rest. So, now, we have been given a problem in a frame in 

which one particle is at rest and another particle, which is coming and hitting it. So, one 

particle is at rest, another particle comes and hits it. So, this is the way we have described 

this particular problem. 

Now, we say identical particle; it means its rest mass must also be available, because 

then only, this particle is identical particle. These two particles come and collide; one 

particle remains stationary; another particle comes and hits here. Let me first complete 

the problem. What is the rest mass and the speed of the resultant particle? What has been 

asked in this particular problem is, what is the rest mass and the speed of the resultant 

particle? These two particles strike and get stuck to each other just like in the problem 

that we have described earlier. Energy momentum conservation; not just momentum 

conservation, both momentum and energy conservation. 
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Let us write initial energy. When we write the initial energy, there was one particular 

particle, which was only at rest. So, that has energy of m naught c square. There is 

another particle, which had a kinetic energy of 6 m naught c square; obviously, that 

particle would have also had a rest mass energy of m naught c square. Therefore, if I take 

the total energy of that particular particle; that will be 6 m naught c square plus m naught 

c square, will be equal to 7 m naught c square. So, this will be for the particle, which is 

moving. This was its kinetic energy; this was its rest mass energy. 
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Remember the expression that we had written earlier that, K is equal to m c square... K is 

equal to m c square minus m naught c square. So, the total energy is sum of kinetic 

energy and rest mass energy. So, this is what I have written here. This is the total energy 

of the particle, which is moving. This is the total energy of the particle, which is 

stationary. And, this adds up to 8 m naught c square. So, total initial energy of the system 

is 8 m naught c square. Now, I have to calculate the momentum. Of course, momentum 

of the particle, which is at rest is 0; there is no problem, because that particular particle is 

at rest. So, u is 0. Therefore, momentum has to be 0. I had to calculate the momentum of 

the second particle. But, what has been given, is only the kinetic energy of the particle. 

Therefore, I must use an appropriate expression to find out from this energy, the 

momentum value. 
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And, for that, we are using the expression, which is well-known, which we have 

described earlier. E square is equal to p square c square plus m naught square c to the 

power 4. Now, for the particle, which is moving, this E was 7 m naught c square as we 

have just now discussed. This is m naught square c to the power 4. Substituting this 

particular expression, I can find out what may be the value of momentum. So, this is an 

expression, which helps me for a single particle to convert energy into momentum or 

vice-versa. This is what I have written here. So, p square c square I have written as E 

square minus m naught square c to the power 4. This slightly simplify this equation taken 

the under root and divided by c square.  



So, I will be getting this as under root E square, which is 7 m naught c square – 7 m 

naught c, not c square; 7 m naught c, because c square I have already divided; 7 m 

naught c minus m naught square c to the power c square, because the c square has 

already been divided. So, this becomes 49 minus 1, which is 48. So, I will get the 

momentum of this particular particle is under root 48 m naught c. So, the momentum of 

the first particle is 0; the momentum of the second particle is under root 48 m naught c. 
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Hence, after the collision, we have just now discussed that, the two particles collide. 

And, that has been given in the problem. And, they get stuck to each other. If they get 

stuck to each other, what remains is only one single particle; and that single particle 

because of conservation of momentum must have the same momentum as the initial 

momentum of two particles; which is under root 48 m naught c. And, it must also have 

energy, which is equal to 8 m naught c square. So, all you know that, the new particle, 

which has been formed as a resultant of the combination of these two particles, will have 

now energy equal to 8 m naught c square and must have a momentum of under root 48 m 

naught c. Using again the same expression, I can find out what will be the value of M 

naught – capital M naught – the new mass – new rest mass of the particle, which we have 

obtained as a result the two particles getting stuck. 
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So, I use the same expression E square is equal to p square c square plus M naught 

square c to the power 4. E we just now said is 8 m naught c square. So, I squared it. So, 

this becomes 64 m naught square c to the power 4. So, this is the E square term – plus p 

square c square; p was under root 48 m naught c; I square it. So, I get 48 m naught c 

square; m naught square c square; and this was p square c square. So, there is another c 

square, which we will make it m naught square c to the power 4. Remember here this is 

the old m naught, because these momenta and energy have been written in terms of the 

mass of the original particles – rest mass of the original particle. 

But, now, you have got a new particle as a combination of these two particles, which 

may have a different rest mass, which I am writing is capital M naught. So, E square is 

equal to p square c square plus capital M naught square c to the power 4, which must be 

the mass of the new particle. I just substitute it here; I just solve it; 64 minus 48. And, 

you will get M naught square. And, you take under root of that; you will get M naught is 

equal to 4 m naught. So, in this particular case, you will find that, the rest mass of the 

new particle that you obtained is 4 times the rest mass of the original particles with 

which this particular particle was formed. So, it has become... The rest mass is now 4 

times that rest mass. 

Next question is to find out the speed. Once we have obtained the mass, we have to find 

out rest mass and we know its momentum and energy; I can always find out its speed. 



That is simple. Let us see how they are... I have given two different methods; but one can 

choose whatever is convenient. 
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So, as far as a new particle is concerned, we have to find out the final speed. We have 

said E is equal to gamma u M naught c square. That is what we have written. This 

particular particle obviously is not at rest. That is why we have to find out its speed. This 

particular thing must be equal to gamma m naught c square, which must be equal to... 

because 4 times m naught was its capital M naught. 
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What we have written is that, M naught was equal to 4 small m naught. So, its energy E 

is equal to 8 m naught c square. This I can write this as 2 times 4 m naught into c square. 

This 4 m naught is capital M naught. So, I can write this as 2 capital M naught c square. 

And, this being equal to gamma u M naught c square. It means gamma u is equal to 2. 

That is what it will tell that, gamma u is equal to 2. So, this is what I have written here in 

this transparency that, E is equal to gamma u M naught c square. This 8 m naught can be 

written as 2 times capital M naught. So, this is 2 M naught – capital M naught c square 

giving me gamma u is equal to 2.  

Now, either I can use the momentum expression here, which I know is gamma u times M 

naught times u to calculate this u, which I have done here. I know the momentum of the 

particle – combined particles – under root 48 m naught c. And, this is equal to gamma u 

M naught is equal to 8 times m naught, because this capital m naught is of course, small 

m naught. I can calculate u. This turns out to be equal to under root 3 divided by 2 c. 

This is other way that, you have already known gamma u. So, you use that expression. 
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So, this is alternate way of doing it. Look at gamma u value directly. Gamma u we have 

just now discussed. It is 1 upon under root 1 minus u square by c square. And, we have 

seen that, this is equal to 2. So, I take inverse of this particular thing and take square of 

this thing. So, I get 1 minus u square divided by c square, which is equal to 1 upon 4. 

And, if you just solve, you get the same result, u is equal to under root 3 by 2 c. So, the 



new particle – the combined particle would now be travelling with the speed of under 

root 3 by 2 c as far as this particular problem is concerned. So, what we have seen in this 

particular problem that, how one can convert from energy to momentum or from speed. 

Now, we just get a practice of using these particular expressions the way we would like 

to use them to convert from energy to momentum or vice-versa or to convert into speed. 
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So, eventually, at the end of this particular lecture, I would just like to summarise that, in 

this particular lecture, we have just given two examples of what we classically call as 

completely inelastic collision. And, we saw that, both these examples – how energy and 

momentum – both have to be conserved together. 

Thank you. 


