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          Momentum Energy Four Vector 

We had started discussing the concept of four vectors. And in our last lecture, we started 

talking about the velocity four vector. We realized that, if you take the first three 

components of standard velocity vector, which we call as u x, u y and u z, these do not 

form the first three components of velocity four vector. The reason for that is that, in 

order to evaluate velocity, we have to divide the displacement by time or rather time 

interval. Now, though the displacement does form components of the four vector, the 

time does not, because delta t is a frame-dependent quantity. 

So, we agreed that in order that we want to construct a velocity four vector, we should 

not divide by delta t, but should divide by delta tau – the proper time interval between 

the two events of the displacement of the particle. Once we do that, then the standard 

values of velocity components u x, u y, and u z get multiplied by gamma u.  
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They form the first three components of velocity four vector. And then we also took one 

example and showed that how to construct a velocity four vector, and also showed that 

once the same particle is looked by another observer in a different frame, then how this 



velocity four vector will transform using the standard transformation equation. So, this is 

the recapitulation of what we had done. We described velocity four vector; then 

eventually, we also derived velocity transformation using velocity four vector. And, as I 

have mentioned; then we gave an example. 
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Let us recall that, our idea the way we started looking about the four vectors was 

eventually to define a momentum four vector. So, now, let us start looking at a new 

definition of momentum. We have talked about displacement; then we talked about the 

velocity; then let us talk about the momentum. So, we now start talking about the 

momentum four vector and try to see the way we have to look for a new definition of 

momentum.  

Now, in order that, we look into a new definition of momentum, I have to multiply this 

particular thing by something, which has a dimension of mass or we have to multiply a 

velocity four vector – that is something which has a dimension of mass. And, this 

particular mass should be frame independent. We do not normally bother about in the 

classical mechanics about mass, which we always take this to be frame independent. But, 

let us be specific. And, in order to convert from velocity four vector to momentum four 

vector, let us define another quantity, which we call as a rest mass of the particle. 
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So, in view of the fact that, there is some universality associated with the concept of four 

vectors, the idea is that, if we define, we could define this particular four vector from the 

momentum point of view. Then it would be easier to see that, its conservation is obeyed 

universally means in all inertial frame of reference. 
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So, as I said, let us define a proper or what we call as a rest mass, which we call as m 

naught. And, to be specific, let us say that, this mass is the mass of the particle, which is 

determined in a frame of reference in which this particle is at rest. So, that is the reason. 



Popularly, this is always called rest mass of the particle. And, because this is something, 

which is always measured in a frame in which the particle is at rest, this is a four scalar. 

So, even if I change, go to different frame of reference, m naught – the rest mass of the 

particle should not change or does not change. So, we define a four scalar, which is a 

frame independent quantity called rest mass of the particle calling this as m naught. Once 

I multiply this m naught by the velocity four vector, I am expected to get something 

which has ambition of momentum; and let us start calling that as momentum four vector. 

We will eventually see how to physically interpret and how to see that, conservation of 

momentum becomes a universal (( )). 
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So, what I do; we have already taken the velocity four vector u and the components of 

that particular four vector as gamma u multiplied by u x, u y, u z, i c. It means the first 

component is of velocity four vector was gamma u u x; second component was gamma u 

u y; the third component was gamma u u z; the fourth component was gamma u i c. This 

entire thing I have multiplied by m naught and called this as a momentum four vector. 

Again, I repeat this m naught is supposed to be frame independent quantity called the 

rest mass or the proper mass of the particle. So, let us assume at the moment that, the 

first three components of this particular momentum four vector the way we have defined 

are the new definitions of momentum. If we assume that, let us see whether the 

conservation law really becomes universal, because that is what is our idea; that is what 

we are aiming at that, the conservation of momentum principle becomes a universal 



principle. It means if it is obeyed in one frame of reference, it must be obeyed in all other 

frames of references. So, let us try to look whether this definition can yield me that 

particular universality. 
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Before we do that, let us write these components. If you remember, we had written the 

velocity four vector as gamma u u x – that was the first component; the second 

component was gamma u u y; the third component was gamma u u z; and, the fourth 

component was gamma u i c. So, I have multiplied this by m naught. So, my first 

component of momentum four vector becomes m naught gamma u u x, m naught gamma 

u u y, m naught gamma u u z, and the fourth component is gamma u m naught gamma u i 

c. As we had agreed that, the first three components of this are the first three components 

of momentum; the new definition of momentum as per special theory of relativity. It 

would mean that… I would call this quantity here as p x, which is the x component of the 

momentum; this quantity I will call as p y; this quantity I will call as p z; and, this fourth 

quantity – at the moment, we have to find out what it is. Let us suppose this fourth 

component; I am just writing this as A 4. We will look at this particular A 4 little more 

clearly in the later part of this particular lecture. 
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So, this is what has been written in this particular transparency. Let p – I am writing in 

the form of p x, p y, p z and A 4; while p x is equal to m naught gamma u u x; p y is 

equal to m naught gamma u u y; p z is equal to m naught gamma u u z; and, A 4 – 

something which we do not know is m u gamma u i c. These three I will call as the x, y 

and z components of the momentum of the particle. So, if we assume this particular 

thing, let us see whether conservation of momentum would be a universally accepted 

phenomenon. It means all the observers in all different frames would find the 

conservation of momentum law to be holding good with these new definitions of 

momentum. 

What is conservation of momentum? The conservation of momentum tells that, if you 

have a system of particles and if they interact and if there is no external force on the 

system of the particle; in fact, we differentiate between internal forces and the external 

forces. So, we have a system of n particles and each are interactive with each other; and 

therefore, each is influencing, applying a force on other particle. So long the force is 

being applied on a particle by another particle of the system; that particular force I will 

call as an internal force. But, any force which is being applied on any of the particle by 

something, which is not a part of the system, we call that as an external force. 
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So, if you have a large number of particles interacting – something like a gas molecule; 

you have one particle here, you have one particle here, one particle here, one particle 

here; they keep on coming; somewhat collides here, something collides here. This could 

be for example, that matter even charged particles. So, there could be electrostatic force 

between these two; electrostatic force could be between these, two between these, these. 

So, they are all interacting. But, if I call this as the system, any force which is caused by 

particle within the system; that is what we will call as internal force. But, assume that, 

this whole thing is kept under gravitational field and there is an earth here, which is 



attracting all these particles. And, this earth is not a part of the system, then that 

particular force will be external force to the system.  

So, conservation law – conservation of momentum law says that, if external force is 0, 

then the net vector momentum of all the particles must always remain constant. That is 

what is called conservation of momentum; momentum will be conserved. So, if no 

external force exists on a system, then the total momentum – the vector sum of all the 

momentum of all the particles must remain identical; it should not change. So, this is 

what I have shown in this particular picture in which I have shown only two particles. 

So, let us suppose this is one particle; there is another particle. These two particles 

interact. And, in this particular case, I have assumed that, they just collide; collision is 

actually one of the form of interactions. So, once they collide, this particular particles 

velocity may change; which I have not shown; it is not important for our argument here. 

Similarly, the velocity of this particular particle is also likely to change after the 

collision. We have normally seen the collisions of particles, collisions of billiard balls; so 

many collisions. These are very natural things. Collision is a very standard classical 

mechanic phenomenon. 

Now, what conservation of momentum would mean that, if I take the initial momentum 

of the first particle, which I am writing as p 1 I and the initial momentum of the second 

particle, which is I am writing as p 2 I; even though their momentum would change after 

collision, I must have p 1 F. If p 1 F is the final momentum of the first particle plus p 2 

F; where, p 2 F is the final momentum of the second particle, because there is no external 

force to the system. Therefore, momentum must be conserved. Therefore, according to 

conservation of momentum law, this initial momentum must be equal to the final 

momentum. Now, what is our requirement? Our requirement is that, if the same collision 

is being seen by some other observer in some different frame, he may find different 

values of initial momentum of the two particles. But, whatever he or she finds, 

immediately after the collision, the final momentum in his frame or her frame should 

also be the same. So, though they may disagree on the value of the momentum like they 

disagree on the value of the velocity, but they should not disagree on conservation of 

momentum; initial momentum must be final momentum whatever is the value of initial 

momentum may be. That is what is conservation of momentum. And, that is what I 

wanted to happen. With this new definition of momentum, we have realized earlier that, 



if we just use Laurens transformation and do not change any other definition of 

momentum, then this will not be the case. We had given an example earlier. 

(Refer Slide Time: 14:32) 

 

So, this is what I have written here. Universality of conservation of momentum implies 

that in any other frame, even though individual momenta may be different, but still we 

must have p 1 I – I have put a prime here to show that this is a different frame – plus p 2 

I prime. This could be different from p 1 I, could be different from p 2 I, because they 

are primed.  

So, the momentum – individual momentum value may be different in different frame. In 

fact, even this sum may be different in different frame. But, whatever might be this 

value, immediately after the collision that particular observer sitting in this particular 

frame of reference must also conclude that, the final momentum of the first particle plus 

final momentum of the second particle must be equal to the initial momentum of the first 

particle plus initial momentum of the second particle. This is what you should also 

conclude. He or she should also conclude that, conservation of momentum is valid in his 

or her frame also. 



(Refer Slide Time: 15:38) 

 

Now, as per new definition of momentum; in fact, they have given new definition of 

momentum; and, we want to see whether this obeys this universality condition. Then as 

per the new definition of the momentum, the first three components of the vector – four 

vector are x, y and z component of momentum vector. That is what we have discussed. 
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Hence, the sum of the three components of individual momentum would transform as 

follows. And now, I make it general; instead of talking two particles, I talk of n particles. 

And, remember when I am talking of conservation of momentum as a vector quantity, it 



means all the individual x, y and z components must also be conserved. A vector does 

not necessarily means that is only magnitude should be same; it also means its direction 

should be same; it means its x, y and z components individually must be conserved. So, 

even the summation of x value of momentum, summation of y component of momentum, 

summation of z component of momentum should also conserve. 
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Now, let us look at the transformation equation, because you have started with the four 

vector momentum concept. Let us see whether this universality of conservation law will 

hold good with this new definition of momentum or not. So, this looks a somewhat a 

complicated equation on this transparency, but let us try to spend (( )) of time to 

understand it. So, I have assumed that, the first three components of the momentum are p 

x, p y and p z utilizing the new definition of momentum. Now, I assume that, there are n 

particles. And initially, at a time when I started observing, I find that, the x component of 

the first particle is p x 1, of the second particle is p x 2, for the third particle is p x 3 and 

this I signifies that, these are the initial values at the time when you started looking at the 

observation. So, if I take for all the n particles, I have to sum at all those values. So, I 

will get summation of k over 1 to n p x k I; where, k would vary from 1 to n, because 

there are n particles. So, this will give me the sum of the x component of momentum for 

all the particles. Similarly, this will give me the sum of the y component of the 

momentum of all the particles; this will give me the sum of the z component of all the 

particles – z component of momentum of all the particles. A 4 – as of now, I do not know 



what it is. So, I will just say A 4 k I. Of course, I know the value of A 4 in terms of 

gamma u; I am not i c. That is a different question. But, the physical… As of now, we do 

not know what does physically it represent and what is its role as far as conservation of 

momentum is concerned. 

Now, we had earlier agreed that, if p x, p y, p z and A 4 are the components of four 

vector. If I take two four vector and add them, they will also be the components of the 

four vector; it means these summations must also transform by the same transformation 

equation that we have written earlier; it means if I go to a different frame of reference, 

which I call as S prime frame of reference, look again at all those particles and find that 

in S prime frame of reference, the summation of x component of momentum is given by 

this, y by this, z by this, and A 4 by this. Then if I open up this equation, that should give 

me this value – sum of the x component of the momentum in S prime frame of reference 

in terms of this particular initial values of sum of momentum in S frame of reference. 

This is the transformation equation, which is has to be used to transform the initial value 

of momentum to initial value of momentum in S prime frame of reference using the 

transformation equation. 

Let me just expand this matrix. It is rather easy to expand. We have done some examples 

earlier. So, let us not spend too much of time here. What I will do here, I will just expand 

this particular thing here; this should be equal to gamma times this particular expression 

plus 0 times this plus 0 times this plus i beta gamma times this. This is equal to this as we 

have seen it earlier number of times. This is equal to this again as we have seen number 

of times. Now, as far as the fourth component is concerned, this will be minus i beta 

gamma times this plus 0 times this plus 0 times this plus gamma times this. So, I am just 

expanding it in the next transparency to write these things into four different equations. 

This is what it is? 

So, sum of the x component of the momentum of all the particles in S prime frame of 

reference would be given by this particular expression, which is here. Summation of k 

from 1 to n p prime – prime, because this is S prime frame of reference x k I – k varies 

from 1 to n should be equal to gamma times whatever was the value of this 

corresponding quantity in S frame of reference plus i beta gamma times summation of k 

is equal to 1 to n A 4 k I whatever this A 4 be. 
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This versus straight forward equation; or, we also see the transformation of A 4 prime. 

This is equal to minus i beta gamma times the first component plus gamma times the 

fourth component. So, these are the equations that we get after expanding that particular 

matrix or expanding that particular matrix equation. Now, as far as these two things are 

concerned, these are straight forward. Let us look little more closely at this. 
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What is conservation of momentum imply? That in S frame of reference… Let us 

assume that, in S frame, the momentum is conserved. If in an S frame, the momentum is 



conserved, it means, after the interaction, they are all colliding with each other, hitting 

each other. And, after sometime you will find that, the individual value of momenta of 

one of them has changed. But, because there is no external force to the system, which we 

are assuming, then the sum of the final value of the momenta of the x component must 

be same as the initial value, similarly for y; similarly, for z. 

Now, I want this conservation. I assume that, this conservation law is holding good in S 

frame. Now, I want that, when I transform these things to S prime frame of reference, 

there also the conservation of momentum must be holding good. So, this is given to be 

that, this is equal to this; the initial value is equal to final value, which will be the case if 

there is no external force to the system. Similarly, this is equal to this; this is equal to 

this. And, I want to have a case; where, an S prime frame of reference, also equivalent 

equations hold good with p being replaced by p prime. 
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Now, out of this, as I have said, x equation is much more… This is what we have written 

as we want that, this also to be true in a different frame. We must have p prime x I 

should be equal to p prime; should be p prime; should be equal to p prime y component, 

p prime z component; should be equal to prime z component. This is what I have been 

saying. 
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Let us look at the first equation, which is much more critical, because for the y 

components, they are equal anyway. So, this is the first equation, which I have picked up 

from the transformation equation, which tells me what is the sum of the x component of 

the momentum in S prime frame of reference. Then I transform this. When I know these 

values, how they will transform to S prime of reference? And, as we can see very easily 

that, this summation would be equal to gamma times this summation plus i beta gamma 

times summation of this A 4 whatever this A 4 be. Now, we have said that, after collision 

or after interaction, the particles have all collided with respect to each other. And, after 

sometime, we are observing. Then conservation of momentum is obeyed good in S 

frame. It means the final value must be the same as this particular value. So, once 

interaction has taken place, I have been given that, this remains unchanged. After 

collision, this does not change. After multiple collisions, there could be multiple 

collisions; these are the particles. But, this does not change. 

Now, using this particular value, I have obtained that, this will be the value of the sum of 

the momentum in S prime of reference. And, I want that, after the interaction, because 

this has not changed, this should also not be changed. But, I realize that, this quantity 

does not solely depend on this, but it also depends on the A 4. If it so happens that, after 

interaction, this does not change – this summation does not change, but this summation 

changes; then I will not be assured of conservation of x component, because p prime 

would then change; summation of p prime would change. It means after the interaction, 



the value of p prime – summation of x component of p prime would be different from the 

initial value. And, that is what we do not want. It means if I want that, this particular 

conservation should be holding good in S prime frame of reference, I must look much 

more carefully at this particular value here. If this value also does not change after the 

interaction, then only it is possible that, this particular value will also not change after the 

interaction. Hence, it is extremely critical to know what is this particular A 4 component. 

And, only if this particular A 4 component is conserved, then only I am guaranteed that, 

the momentum will be conserved in all other frames. 
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So, we thus realize that, the universality of conservation of momentum critically depends 

on the conservation of the fourth component of four vector. Now, if we go back to our 

thinking over classical mechanics, we have two specific conservation laws: one is what 

is called conservation of momentum, another is conservation of energy. However, in 

classical mechanics, we have come across situations, where what we call as mechanical 

energy need not be conserved. We have given in earlier example of completely inelastic 

collision, where two particles come and hit each other and then they get stuck. We find 

in such a situation that, mechanical energy is not conserved. But, momentum is 

conserved, because there is no external force in system. So, internal forces do cancel out; 

and therefore, there is definitely a conservation of momentum, though lot of energy. So, 

first, we realize that, in this particular case in the new definition in the relativity, 

conservation of momentum critically depends on the conservation of the fourth 



component. Let us think whether this particular fourth component can be thought of 

somehow related to another important quantity, which is called energy. 
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This was the fourth component – A 4 was equal to m naught gamma u i c. So, let us try 

to look whether this fourth component can be related to energy. That is what was the 

main role of Einstein to realize this particular component as the force component of 

course. Historically, that may not be the case of the… because the concept of four vector 



probably came much later. Einstein had a different probably way of looking into this new 

definition of energy. But, now, we can talk in this particular term. 

See energy must have dimension of energy obviously. And, we realize that, mass into 

velocity square is the definition, is the dimension of energy. So, I write this A 4 as m 

naught gamma u i c; then write E is equal to m c square, because that will give me the 

dimension of energy. If I write this E is equal to m c square divided by c; where, m of 

course, is defined as m naught gamma u; then I can write the fourth component A 4 as i 

E by c. Let me just take little bit of time to explain once more. 
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So, I have A 4, which I wrote as m naught gamma u i c. Now, this m naught gamma u – I 

call as m; I write this as m i c. Now, I want to call E is equal to m c square, because that 

has the dimension of energy. So, I multiply this by c and divide this by c. So, this 

becomes i m c square by c. And, this new definition – this becomes i E by c. So, the 

fourth component now becomes related to the energy of the particle; and, is written as i E 

by c.  

Remember, we have used E is equal to m c square and m as m naught times gamma u. 

Remember it is m naught, which is a four scalar, not this m, because this m is m naught 

multiplied by gamma u. And, gamma u will be different in different frames, because this 

depends on the speed of the particle; and, speed is indeed a frame-dependent quantity. 

And, as we have all known that, this concept of new definition of energy E is equal to m 



c square is so popular that, people may not know physics, but they know E is equal to m 

c square. This has created huge impact on society just by name of Einstein; E is equal 

to… We always associate with Einstein E is equal to m c square; it had a huge impact. 
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So, what we said, let us repeat now. The conservation of momentum will be valid in all 

frames if energy E, the way we have now defined is also conserved in the process. So, 

you must have both momentum and energy conservation unlike the case in classical 

mechanics, where their certain phenomenon in which we were not conserving the 

energy; and, in certain phenomena, we were conserving energy. In fact, strictly speaking 

in those phenomena, also, the energy is conserved; energy is not lost, but it is converted 

from the standard mechanical energy to some different form of energy. But, strictly 

speaking, the energy is not lost; it is always conserved. But, now, in relativity, whether 

the type of collision is the one which we described earlier with the two particles come 

and get stuck to each other or whether is what we traditionally called it an elastic 

collision; in all these cases, we will conserve both energy and momentum if we want 

them to be universal phenomena. 



(Refer Slide Time: 31:50) 

 

Now, we also see… Let us look at the fourth component of the (( )) transformation. The 

fourth component – now, I have replaced that gamma u m naught with E prime. So, we 

have new definition of energy here. So, this is the transformation of the fourth 

component minus i beta gamma times the first component plus gamma times the fourth 

component. Now, if this is conserved, this is conserved; this automatically means this is 

also conserved. So, this ensures that, even energy E would be conserved in all frames, if 

energy and momentum are conserved in a given frame.  
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So, if momentum is conserved, I need energy to be conserved, if this momentum 

conservation has to be universal law. But, it also ensures that, momentum and energy are 

conserved in one frame of reference; both momentum and energy will be conserved in 

any other frame. 

Now, let us look at this particular energy. What is this energy? See we always think 

that… We have always been telling that, if you go to the non-relativistic limit; it means if 

the particle speed is very small in comparison to speed of light; that you must get back to 

the classical mechanics. That is what we have always been telling. So, if u as 0 for 

example, gamma u equal to 1; the momentum, because u is 0 here, will be 0. But, this 

energy will not be 0, because this becomes 1; this will be just m naught c square. 

Similarly, in the limit, let us assume that, u is not 0, but very small in comparison to 

speed of light. So, in the limit, u being much smaller than c, gamma u will again tend to 

1; which means p naught will be approximately equal to m naught u, because gamma u is 

more or less close to 1; which gives me back the classical definition of momentum, 

which is mass multiplied by the velocity.  

But, E will still remain m naught c square. So, we do not have a really classical analog of 

this particular energy. We had never thought that, this – if a particle is at rest, when you 

have speed equal to 0, is still the particle will have some energy. In the classical 

mechanics, we have not taught; this is a totally new revolutionary concept of energy, 

where we say that, even if there is a particle, which is at rest, this particular particle has a 

rest mass energy. That is what we call a rest mass energy of m naught c square. 

Now, the concept of energy is little more general in the eye of Einstein or in the eye of 

special theory of relativity; it contains all the form of energy. If the particle gains speed, 

its energy increases. So, this will be on the top of the m naught c square. Similarly, the 

particle becomes hot, means it is gaining some energy; its mass should increase; its m 

naught should be increased. So, it contains information about the entire energy of the 

system. Whatever might be the energy, for example, if you have two particles and these 

two particles have their own rest mass energies and get bound; then when they get 

bound, certain amount of energy is released and that release of energy would eventually 

lead to a decrease in its rest mass, because as far as relativity is concerned, there is no 

difference between mass and energy, because the two are related by a fundamental 

constant c square.  



So, a rest mass of the particular particle will tell the entire energy contained in it; if we 

are talking for example, the rest mass of hydrogen atom, the rest mass of hydrogen atom 

will be slightly smaller than the sum of the rest masses of proton and electron, because in 

order to form a hydrogen atom, certain amount of energy has been released. And 

therefore, the mass must have come down.  
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Similarly, if I take hydrogen atom and release it, so that we give it certain amount of 

energy; so hydrogen… so that the electron and the proton becomes separate; then we will 



find that, the masses of electron and proton, their sum would be slightly larger than the 

mass of the hydrogen atom; and, that increase will be just related to the binding energy 

of the hydrogen atom. So, this is what I have written. This new form of energy does not 

resemble any classically known form of energy; it is entirely a new concept of energy. 

Energy gain in different form would lead to an increase in the mass. So, if we take one 

particular, in principle, heat it; then its mass should go up. Mass can be expressed in the 

units of energy as the two are related through a fundamental constant. In fact, it is often 

told, many of the faces especially, those who are working in the particle physics area, 

they will always express mass in the units of energy. What is a mass of electron? It is 

0.51 Mev. See Mev – mega electron volt is the unit of energy.  

But, one says, the mass is equal to energy. Similarly, what is the mass of proton? It is 

approximately 940 Mev. Again, we are expressing mass in terms of energy; effectively 

means it is the value of m naught c square, which is equal to that energy. So, there is no 

difference in relativity in the mass and energy, because the two are related by the (( )) 

They are dimensionally different; no doubt, they are different dimensionally. But, as far 

as the relationship is concerned, they are related by a fundamental constant speed of light 

square. 
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Now, let us talk of kinetic energy. This is something which we know in classical 

mechanics. So, let us define kinetic energy with this new definition of energy. As we 



have seen that, a particle at rest also has energy, which we call as rest mass energy; now, 

if this particular particle has started moving, then its energy would have gone up. Then 

whatever is the increase in the energy – that is what we call as kinetic energy. 
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See if the particular particle has started moving, then the energy will be given by gamma 

u m naught c square. When the particle was at rest, this gamma u was equal to 1 and the 

energy was m naught c square. Was the particle has picked up certain speed, the value of 

gamma u has gone up whatever might be the slight value, but it has gone up. And 

therefore, this energy E has increased. Whatever this increase in the energy E… This was 

the final energy; this was initial energy; this is what we will call kinetic energy as E 2 

minus E 1 is equal to gamma u minus 1 m naught c square. We can also write, because 

this is what we have defined as m.  

So, I can also call this as m c square minus m naught c square. So, kinetic energy in 

relativity is defined as either gamma u minus 1 m naught c square or as m c square minus 

m naught c square. And, we will just now show that, this kinetic energy, which will 

reduce to the traditional definition of kinetic energy in the limit of low speeds or low 

values of u. 
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Let us see how. I have written K as m naught c square; and, this was the value of gamma 

u; gamma u is 1 upon under root 1 minus u square by c square. So, this is the value of m 

c square minus m naught c square. So, I take this particular quantity in numerator. If I 

take this particular quantity in numerator, I can write this as m naught c square 

multiplied by 1 minus u square by c square, which is here to the power of minus half. 

This term is identical, which is minus m naught c square. Now, this particular thing… 

because in the limit, u is very small in comparison to c.  

This can be expanded into a series and you can retain just the first term and neglect 

higher order terms, because u is very small in comparison to c. So, when I expand here, I 

will get this quantity multiplied by here or there is a minus half. So, this will become 

plus half. So, this will become approximately m naught c square multiplied by 1 plus – 

this sign becomes plus, because of this negative sign here; and, there is a half; so this 

becomes 1 plus u square by 2 c square under the limit that u is very small in comparison 

to c. This minus m naught c square is a kinetic energy. 

If you expand this, you are getting this m naught c square. This will cancel with this m 

naught c square. This c square in the second term would cancel with this c square. And 

then you will just get half m naught u square, which is the standard classical definition of 

kinetic energy. So, this new value, this new definition of kinetic energy does yield me to 

the classical expression in the classical limit. That is what we had expected. But, let us 



realize that, the E, which we now call as total energy or to be more precise, total 

relativistic energy; that does not have classical analog. That will not reduce to half m v 

square when the speed of a particle is slow. It is the kinetic energy, which will reduce to 

half m naught u square. So, we should be differentiating the kinetic energy and the total 

relativistic energy and remember it is the total relativistic energy, which must be 

conserved in a process along with the momentum. 
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So, these are the new definitions just to summarize. p is equal to mu; E is equal to m c 

square; K is equal to m c square minus m naught c square; and, m is defined as m naught 

divided by under root 1 minus u square by c square. 

Now, looking at these new definitions let me rewrite the momentum energy four vector. 

We had earlier agreed that, the first three components are p x, p y and p z. We have also 

discussed that, the fourth component is i E by c. So, what it means that, if I find a 

particular particle in a frame of reference, with the new definition of momentum and 

energy (( )) value of momentum or x component of momentum is p x; y component of 

momentum is p y; z component of momentum is p z; and, its energy is E. Then these 

four components will transform to a different frame of reference as prime of reference. It 

means the new values in a different frame; the values of the x component of the 

momentum, y component of the momentum, z component of the momentum and the 

energy would be given by this same transformation equation, which we have used 

earlier.  
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In fact, (( )) involve both momentum and energy. We generally call this as momentum 

energy four vector, not just a momentum four vector. So, if I have to transform the 

momentum, then all I have to do is to expand this particular matrix. So, I can find out 

that, p x prime for example, here – p x prime will be equal to gamma times p x plus i 

beta gamma times i E by c; p y prime of course will be p y; p z prime will of course be 



equal to p z; and, i E prime by c will be equal to minus i beta gamma times p x plus 

gamma times i E by c. 

If I just make them just simplify this equation, this becomes the momentum-energy 

transformation. So, p x prime would be given by gamma times p x minus v E by c 

square; p y prime is equal to p y; p z prime becomes equal to p z; and, E prime becomes 

gamma E minus v p x. Probably, one would have noticed this symmetry in the arguments 

– symmetry in these transformation equations. See in this type of equation, x minus v t 

was appearing for x component; here now appears for the fourth component, which is 

energy in the momentum, which was the first component. This equation is gamma p x 

minus v E by c square. Similar type of equation was for t – t prime was turning out to be 

equal to gamma t minus v x by c square; you just remember. But, we realize, there thing, 

which was the fourth component was totally different here; the fourth component is i E 

by c. So, that makes a difference. There it was i c t; here its i E by c. So, that makes this 

particular difference. 

Now, let us look at the length of its energy-momentum four vector for a single particle. 

Same principle we can write this particular momentum four vector for a set of n 

particles. We can add all these momenta. We will work out one or two examples for this 

particular case later; not in this lecture, but some of the later lectures. But, at the 

moment, let us just assume that, there is one single particle. And, if it is so then the 

length of this particular particle should be a four scalar; it means even if I change the 

frame of reference, this should not change. It is too in principle for any four vector. Even 

if we would have written for the sum, the length should be frame-independent quantity. 

But, I am interested in looking at a specific expression, which eventually is obtained by 

obtaining the length of energy-momentum four vector for a single particle. So, let us just 

evaluate the length of energy-momentum four vector for just a single particle, which 

gives me one expression, which turns out to be very useful expression for solving the 

problems. 
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See if I have to look at the length, what I have to do? I have to take the momentum four 

vector and take a dot product with its own… This will give me the square of the length 

of the energy-momentum four vector. So, let us evaluate this p dot p; which I am doing 

in the next transparency. 
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So, this was the p dot p. Remember the first three components of p are p x, p y, p z; and, 

the fourth component was i E by c. Now, if I have to take a dot product, it means we take 

with its own self. So, I write the same vector the component wise as i E by c. I take the 



dot product; it means this multiplied by this plus this multiplied by this plus this 

multiplied by this plus this multiplied by this. That is the way we have defined the dot 

product between two four vectors. See if I multiply this by this, I get p x square. So, this 

will turn out to be p x square plus p y square plus p z square, because I have to add all 

these three. So, this multiplied by this plus this multiplied by this plus this multiplied by 

this plus this multiplied by this. This gives me p x square plus p y square plus p z square. 

When I multiply the two, i square will give me minus 1. So, this will be p x square plus p 

y square plus p z square minus E square by c square. So, this is what I have written here 

– p dot p is equal to p square minus E square by c square. 

Now, we have already seen that, the value of p is related to m naught gamma u u. So, u x 

square plus u y square plus u z square; I can write as u square. So, this becomes m 

naught square gamma u square u square. And, as far as E is concerned, this was also m c 

square; and, m was m naught gamma u. So, this becomes m naught square gamma u 

square c square. I can take this m naught square gamma u square out common. So, this 

becomes m naught gamma u square.  

This becomes equal to u square minus c square. Now, you can very easily see that, if I 

write this gamma u square and expand it, this will be 1 upon under root 1 minus u square 

by c square. If you just simplify this equation, which we have in one of the cases earlier, 

this will just become minus c square and this is minus m naught square c square; which 

indeed is a four scalar, because m naught we had defined as a four scalar. See I know its 

constant in all frame of reference. So, the length of the four vector is indeed unchanged 

when I change the frame of reference. But, this particular equation gives me something, 

which is interesting; it tells me that, for a single particle, p square minus E square by c 

square must be equal to minus m naught square c to the power 4. 

This is what I have written. This is obviously same for all the frames. This leads to the 

following useful relationship – E square is equal to p square c square plus m naught 

square c to the power 4. Let us just look at here. This was p square. So, what I take, I 

multiply it by c square. 
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Let me write it here. p square minus E square by c square is equal to minus m naught 

square c square. So, if I multiply the whole thing by c square, p square c square minus E 

square is equal to minus – there was m naught square here – m naught square c to the 

power 4. I take this on this side; this on this side. So, this becomes E square is equal to p 

square c square plus m naught square c to the power 4. This is a very useful equation, 

because this gives you relationship between energy and momentum. See if I know the 

energy of the particle, I can find out what is the momentum of the particle. If I know the 

momentum of the particle, I can find out what is the energy of this particle. Hence, this 



particular equation is useful, because it gives me a relationship between the energy and 

momentum.  

So, this is what is the equation, which we normally use in many of the equations 

requiring interactions of various particles giving me E square is equal to p square c 

square plus m naught square c to the power 4. Similarly, I can find out a relationship 

between kinetic energy and momentum. Though kinetic energy has no very special 

meaning in relativity, but many times now we talk in terms of kinetic energy. So, if we 

are interested in finding out a relationship between kinetic energy and momentum, that 

also I can do. 
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So, this becomes p square c square is equal to E square minus m naught square c to the 

power 4. The same equation I have written in a slightly in different fashion. And, this 

energy E – I have written as K plus m naught c square, because we had defined K as m c 

square minus m naught c square; and, E was m c square. So, this I can write as K plus m 

naught c square whole square minus m naught square c to the power 4. You just open 

this up. This becomes K square plus 2 K m naught c square plus m naught square c to the 

power 4. That m naught square c to the power 4 cancels with this. This equation comes 

out to be equal to K square plus 2 m naught c square K. So, this is the relationship 

between kinetic energy and the momentum. 
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Let us just look at the classical limit of this particular equation. The classical limit of this 

particular equation, I just take K out. So, p square c square becomes K multiplied by K 

plus 2 m naught c square. So, if K is very small in comparison to the rest mass energy of 

the particle, I can neglect K. And, if I neglect K, then I get K is equal to p; this c square 

cancels here; I get K is equal to p square by 2 m naught; which is the standard energy-

momentum relationship in the classical mechanics or rather kinetic energy-momentum 

relationship in the classical mechanics. p square by 2 m gives me the kinetic energy. This 

also tells you one more thing.  

Often people ask when we should be sure that, we should apply special theory of 

relativity without… unless we will make a big mistake; and, when we need not apply, 

because we are really in a classical limit. In case of… If we are talking about the 

velocities, we always say that, gamma should be very close to 1. It means you must be 

talking… you must less than 0.1 c of that order. In terms of energy, this always tells, so 

long, the kinetic energy of the particle is much smaller in comparison to the rest mass of 

energy of the particle; then I can apply classical mechanics. For example, if I am talking 

of hydrogen atom, where the particle has the energy order of the order 13 electron volt, 

we rely that rest mass energy is half Mev; then of course, I can apply classical 

mechanics. 
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The last thing which I would like to describe in today’s lecture is a totally new concept, 

which comes out of relativity; which is a presence of a zero rest mass particle. In the 

classical mechanics, we never can imagine a particle, which has no mass. But, in 

relativistic mechanics, we can imagine that, a particular particle may have zero rest mass; 

m naught can be 0. Of course, if m naught is equal to 0, using these two expressions for 

energy and momentum, energy should be 0 and p should be 0 provided this particular 

quantity is not 0.  

And, this quantity will be 0 only when u becomes equal to c. So, this gives you a 

possibility that, even if m naught is equal to 0, E can be a finite nonzero; p can be a finite 

nonzero. But, in that case, you must have u equal to c; means that particular particle must 

travel with speed of light. So, relativity gives you a possibility of presence of a zero rest 

mass particle. But, that particle must travel with the speed of light. And, we know a 

typical example is light itself. Photon is considered as a particle, which moves obviously 

with the speed of light and has zero rest mass. 
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So, this is what I have to say. Unless u is equal to c, in such cases of course, because rest 

mass energy is 0; so total energy is equal to the kinetic energy is equal to pc, because E 

square is equal to p square c square plus m naught square c to the power 4. That m 

naught square c to the power 4 term does not exist. So, it just becomes E is equal to pc. 
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So, finally, I will summarize whatever we have discussed. We defined energy-

momentum four vector in this particular lecture; then ensured that, energy-momentum 



conservation becomes indeed universal; and finally, gave a totally new concept of zero 

rest mass particle. 

Thank you. 


