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Lecture - 38 

Resonating Cavity 
 

In the last lecture, we have talked about a Resonating Cavity which is a rectangular 

parallely piped of dimensions a by b by d, in which I have trapped electromagnetic 

waves, and the walls of the cavity are metallic, good conductors. And we had seen that it 

is possible to classify, the modes as before in terms of whether the electric field or the 

magnetic field is perpendicular to the perceived direction of propagation; in this case we 

have taken to be along the z axis, which is along the length, along which the length is d. 

And so we will continue to talk about resonating cavity and the q factor of the resonating 

cavity today, later on we will talk about a circular wave guide, that is one having 

cylindrical symmetry. 
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So, what we had seen is this, that the T E l m n mode, they are described by having E z is 

equal to 0 which automatically implies E x equal to 0, and so therefore, the entire field 

can be written in terms of H z. So, since we are writing things in terms of H z, so I will 

change my notation slightly, that is I will define H z 0, what I had done earlier is to write 

each one of the E components for example, I wrote E x as E x 0 times sin cosine 



function. But, instead of doing that since, it is going to be determined by H z so let us 

have this H z 0 as the multiplying factor. 

So, H z 0, I define as equal to i E 0 k x by omega mu, and we know that k x is l pi over a, 

but in this case 1 0 1,so l is equal to 1soI have got i is 0 pi over omega mu a. So, in terms 

of this I have my H z works out to a simple expression, H z 0 cos k x sin k z z, and this is 

this was the coefficient that was there in front of the H z, which I have now call it, called 

as H z 0. 

In terms of this I can redefine, the coefficient that appears in front of E y and H x, and it 

turns out that E y is given by this quantity times H z 0 sin into sin, and H x is simply 

given by minus a by d H z 0 sin k x x cos k z z. And of course, H y turns out to be equal 

to 0, and this is because, I have taken the mode which is the middle one, which is m 

equal to 0, and as a result E x and H y have become equal to 0. 
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So, what we do next is to define what is called as the Q of the cavity, the Q is defined 

formally as the amount of energy that is stored in the cavity, by energy lost per cycle, 

through the walls of the cavity; and the formal definition is omega times, energy stored 

in the cavity divided by the rate of energy loss. So, what do we do now is to take a 

specific geometry, we will still be talking about T E 1 0 1 mode, and try to see how the Q 

value is calculated, remember till now we had said, that the walls are perfect conductor. 
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But, so let me first calculate the numerator, which is simply the total energy density, and 

that is given by epsilon by 2 integral E square d v, and since the only component of E 

that is non 0 is E y, so it is E y square d v. And if you recall my E y is given by this 

expression, there is a constant, and there is a sin k x and sin k z, so therefore, my 

integration will be over sin, well since it is E y square over sin square k x x, and sin 

square k z z. And the integration over y is still here, because that function, there is no 

function which depends upon y here, so therefore I get 0 to b d y which simply gives me 

a b, and each one these things, sin square k x recall that k x is given by l pi by a. 
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So, since l is equal to 1 it is pi by a, and k z is given by n pi by d, so it is pi by d so my 

total energy that is stored which is epsilon by 2 E y square modulus which gives me 

omega square mu square a square divided by pi square, then I have of course, H z 0 

square integral over b simply gives me a b. Now, this is an integral from 0 to a sin square 

k x x d x, so now the sin square k x x is 1 minus sin sorry, 1 minus cos 2 k x x divided by 

2 d x; and we have to sort or realize that k x is pi by a, and the other 1 is 0 to d 1 minus 

cosine 2 k z z divided by 2 d z. 

So, notice that 1 by 2 gives me a by 2, this gives me a d by 2, this cosine if you integrate 

will give you a sin to a 2 2 k x x and so therefore, at 0 limit it is 0, and when you put x is 

equal to a, so you get sin 2 k x a, but then since k x is pi by a, so this integral and 

similarly this integral works out to 0 (Refer Slide Time: 07:12). So, therefore, this is 

equal to epsilon by 2 omega square mu square by pi square H z square H z 0 square I had 

a b there, I had an a square there, and I am getting a a by 2 there, so I get a a cube by 2 

into I have a d by 2 there, so this is this is the expression, which works out epsilon by 8 

omega square mu square by pi square H z 0 square a cube times b times d, so this is this 

is the expression for the amount of energy that is stored. 

Now, what we are going to do now is to calculate the amount of energy that is lost, 

through the walls of the cavity, in order to do that we have to realize that. I have a 

rectangular parallelepiped with what we earlier assumed as perfect conductors, what do 

we have our finite conductivity of the at the walls, but since we can assume the 

conductivity to be large this, can depth will be fairly small. 

Now, since the electromagnetic wave does not penetrate substantially into the plates, into 

the depth of the plates, we can assume that field in this particular case, we are only 

interested in that tangential component of the magnetic field. Remember, the tangential 

component, the normal component of the magnetic field was 0, but tangential component 

of the magnetic field to be more or less confined surface. Now, if it is confined to the 

surface, I have a surface current which I will designate by J s, and this J s is essentially 

related to the tangential component of the magnetic field by this relationship J s is equal 

to n cross H.  
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So, what we will need to is to compute the surface current at each of the six surfaces, and 

then calculate how much half R n J square which is my loss. So, let us illustrate this with 

some specific examples, so let us look at this, parallelepiped here, and you notice that 

there is a front face, and there is a back face, the front face is essentially an y z plane, and 

at x equal to 0; and the back face is also parallel to as a y z plane at x is equal to a. And 

the normal to each of the faces is parallel to the x direction, it is either plus x for the you 

know one of the walls and that is the back, wall and minus x for the front wall, because 

the normal has to be taken of the inside face. So, therefore, if I look at any one of this 

whatever I say will be valid for the, so let us look at the front wall, now front wall is an y 

z plane, so I write down J s as plus or minus x depending upon whether it is front or 

back, time cross since it is y z plane my magnetic field is H y y plus H z z these are unit 

vectors. But, we had seen that H y is equal to 0 for t modes, so t 1 0 1 mode, so therefore, 

I get x cross z which is equal to y and is equal to minus or plus. Now, which tells me that 

the modular’s square of J s, which is what is involved in the calculation of the losses is 

simply given by H z 0 square sin square k z, so let us look at what it is. 
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So, what we had shown is from the back and the front wall J s absolute square is given 

by H z 0 square times sin square of k z z that is because, all that I need is my H z z, and 

now I want to calculate how much is the loss from the two walls. So, the loss from the 

front and the back surface, factor of 2 because, each wall gives me the same value, half 

the surface resistance R s and I have to integrate J s square over the surface, and the 

surface is the d y d z. So, let us put it put the value 2 and half goes away I am left with R 

s H z 0 square integral d y there is no nothing to integrate actually, sin square k z z d z 

this is from 0 to b, and this is from 0 to d; well we have seen that this integral gives us a 

half, this integral half d, this integral gives us a b. 

So, therefore, I am left with R s H z 0 square into b into d by 2, so this is the loss from 

the front and the back surface, well two more surfaces are there, let us look at the left and 

the right surface. 
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So, if we look at the left and the right surface, this is my left surface which is an x z 

plane, this is my right surface which is also x z plane; and the perpendicular to this is 

along the plus y direction, and on this is along the minus y direction, and the planes are 

located at y is equal to 0 and y is equal to b. So, my J x is plus or minus y, since it is x z 

plane, I write in general H x x plus H z z, remember that both of them are non 0, so 

therefore, I have got actually two terms coming out of there, so y cross x gives me a z, 

and of course, y cross z gives me an x. 

So, I am left with plus or minus or minus or plus H H x z plus H z x, but fortunately I am 

interested only in the modules square of this, so therefore, what I get is, so this is side 

surfaces. 
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My J square then is given by H z 0 square, and look at what we did this was my J s, and I 

substitute for expressions that we had written down earlier for H x and H z; and this 

becomes a square by b square. Because, having a square, sin square k x x cos square k z 

z plus that is a z component, so which was simply at z square cos square k x x into sin 

square k z z. Well once again I can calculate the loss, so this is simply obtained by 

integrating over x and z, and each one of these integration will give you, well x 

integration will give you a by 2, z integration will give you d by 2. 

So, I am left with H z 0 square here by a by 2, so that is a cube, and a so I have a d 

square there already, so therefore, it should be a cube d divided by 4, sorry a cube d on 

the top, but I have a d square there, so therefore a cube by 4 d and plus this is a and this d 

so I have got a d by 4, so this is the loss from the two side surfaces. I am still left with 

another pair of surfaces, I will not repeat this calculation, but this goes exactly the same 

way, and you can see that the from top and the bottom, you can take it up as an exercise, 

it works out to R s a square over d square H z 0 square into a b by 2. So, the job now is to 

add up the three factors, the factor of 2 has been already taken into account when we 

talked about two surfaces. 
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And so therefore, this gives rather complicated looking expression, but it is just nothing 

but, addition d cube 2 b plus a cube 2 b plus d, the Q value is omega times energy stored 

for which we had obtained this expression (()), divided by the rate of energy loss and this 

is what we have just now calculated. So, this divided by this and if you simplify then, 

this is what you will get, so this is, so in other words, if I know the frequency a and of 

course, the dimensions of the cavity give him the surface resistance, I can calculate how 

much is the loss. 

As we have pointed out earlier, the cavity resonators are very useful, because they can be 

made to work at higher frequencies, and the amount of loss that you have there is much 

less than what you have, either in coaxial cable or in transmission lines. So, therefore, 

their good ways of storing energy, with this I come to a conclusion on the rectangular 

geometry, and I will not yet go over to since cylindrical or rather circular wave guides as 

they are called, because it is essentially a cross section is a circular, and the guide 

direction is as before is z direction. 

The only thing that, I would like to point out is that what is generally of great use or what 

are known as optical fibers, these are actually dielectric cylindrical wave guides, but 

what I am discussing here is the situation where I have, the dielectric or vacuum or air in 

within, but on the (()) wall are still perfect conductors. So, therefore, I am still talking 

about wave guides in the same way as we talked about earlier, and we are simply 



assuming that the geometry is cylindrical. And the, this is not discussion of the optical 

fibers, because if you are discussing optical fibers what you require is the a dielectric 

wave guide.  
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So, let us let us look at the geometry of this, so this I recall for you my cylindrical 

geometry I have x axis here, y axis there, so it is basically a polar coordinate, given by a 

rho and phi and of course, the z axis the z direction remains exactly the same. So, rho 

and phi are along the two dimensional cross circular cross section, and z is of course, 

along the right direction. So, what we will now do is this, we will write down the 

Maxwell’s equations in the cylindrical geometry. 
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So, let us look at that, so let me let me take the Ampere’s Law del cross H is equal to 

epsilon d by d t, so epsilon d by d t and we have seen that we are working with E to the 

power I omega t, so therefore, I have got I omega epsilon E. The writing down cross 

product is of course, fairly straight forward in the rectangular coordinates, the Cartesian 

coordinates, but we have to be slightly careful when you write down the cross product in 

cylindrical coordinates. 

And it is primarily, because the one of the variables namely phi does not have the 

dimension of length, and so therefore, it is actually rho phi which has a dimension of 

length, and that is what makes things slightly different. Any way let us let us look at the 

rho component of this, I omega epsilon E rho, so this quantity is del cross H I will just 

illustrate one or two of them, and then you can do that, so this is del cross H s rho 

component. So, you realize that rho phi and z they form a trait, so therefore, I get d by d 

phi I got up, so it is actually d by 1 over rho d by d phi of H z minus d by d z of H phi. 

Now, we will as before assume that d by d z goes as is the same as multiplying it with a 

minus gamma, that is because, we are taking the propagation to be given by E to the 

power minus beta z, E to the power minus gamma z. If gamma happens to be imaginary, 

then of course, there will be propagation, this is something which you will keep in mind. 

And  now, look at what is I omega epsilon E phi, so that is d by d z of H rho minus d by 

d rho of H z, and this is d by d z, so I get minus gamma H rho minus d by d rho of H z 



And likewise, the third equation I omega epsilon E z is 1 over rho d by d rho of a rho H 

phi you have to simply look up, the expression for del cross in cylindrical coordinate 

minus 1 over rho d by d phi of H z. The Faraday’s Law equation, which gives me del 

cross E is minus d b by d t or minus mu times d H by d t is very similar in structure, but I 

will have del cross E is equal to minus i omega mu times H. And so writing down these 

equations will be exactly similar, the variables differentiations, they all remain the same, 

interchange E with H and remember, epsilon the omega goes to minus omega, because 

there is a minus sign in front of in the, Faraday’s law, so this these are the set of 

equations that you have. 

Now, our next job is exactly the what we have been doing, that is try to classify these 

modes, these in terms of modes. And we will again assume T E and T M mod, I will take 

one pair of equation, and illustrate that it can be done, and then you can similarly do it 

for the remaining. 
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So, take for example, the the equation that we had written down are these equations, let 

me just go back. 
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So, for instance the first equation here, I got i omega epsilon E rho, this is equal to 1 over 

rho d by d phi of H z plus gamma times H phi, this is one equation I will take; the other 

one is again the equation involving the same rho component, and the phi component, so I 

got H phi part here. So, I get minus i omega mu H phi is equal to minus gamma E rho 

minus d by d rho of E z, so I will I will simply play around with these two equations, and 

show and eliminate H phi from here. So, this is what is shown here, that if I want to 

eliminate H phi, I multiply this equation with minus i omega mu, and that that equation 

with a gamma, and usual subtraction. 

And you can see that, this is the way the equation looks like, that is do a eliminate H phi, 

so I will be left with simply E rho E z and H z, E z and H z I want, so therefore, I will 

write this as gamma square, this is fairly straight forward algebra. Gamma square plus 

epsilon mu omega square E rho is given by minus i mu omega by rho d by d phi of H z 

minus gamma d by d rho of E z; and similarly, you can write down the remaining 

equations, which I have simply plugged it in here. 

This quantity gamma square plus epsilon mu omega square is what I would designate as 

k square, so this is k square E rho equal to this and you can immediately see that this is 

the way the four quantities, E rho, E phi, H rho, and H phi will be expressed in terms of 

H z and E z, rather in terms of their directives. So, let us for instance talk about the T E 

mode for which E z is equal to 0, notice immediately this drops out, that drops out, that 



drops out, that drops out; so, you have things written in terms of the derivatives of H z 

only. 
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Now, the next job is exactly what you did earlier, namely I need to find out what my E z 

or H z happen to be. So, does not matter I have written it for E z, but since the equation 

is identical for H z, the same equation will be valid for H z as well. 
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So, this is given by del square of any component of e, so in this case I have written down 

E z, but I could write down H z, because that is what I have to substitute there. So, this 



quantity let us write down H z this equal to minus omega square mu epsilon times H z, 

this equation is solved by a technique which we have been talking about earlier, namely 

separation of variables. So, what is done in that case is H z which is a function of x, y, z 

is written as a function of as x which a function of x, capital Y which is a function of y, 

and a capital Z which is a function of z. 

So, if you substitute this here, remember del square is let us write down that in 

cylindrical coordinate, the del square is 1 over rho d by d rho of rho d rho by d by d rho 

of H z plus 1 over rho square d square by d phi square H z, and d square by d z square of 

H z, this is equal to minus omega square mu epsilon H z. So, substitute H z equal to this, 

and then divide all through by x, y and z, and then you get 1 over I am sorry, I made 

slight (( )) because, I am a working in not in rectangular system, but in cylindrical 

coordinate system. 

So, let me write this as H z of rho phi and z is equal to capital R which is a function of 

rho, then I will use Q which is a, or F which is a function of phi, and a capital Z which is 

a function of z. So, having written this, I divide it by R, phi and Z, and you can see easily 

that this must be 1 over R the same thing, 1 by rho d by d rho of rho d by d rho of R plus 

1 over F 1 over rho square d square by d phi square of F plus 1 over z d square by d z 

square of Z, that is equal to minus omega square mu epsilon since, I have divided both 

sides by R, F and Z, so on the right side I have nothing. 

Now, then I argue the same way, that here I have a term which is a function of R, phi, z 

etcetera or at least these two terms, depend upon R and phi, and this term depends only 

on Z, and I want both these terms when they added together to give me a constant. So, 

that as a we have seen is the rather tall order, so that can be achieved if this term is a 

constant and pair of terms is also a constant, so let us do that.  
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So, we rewrite 1 over R 1 over rho d by d rho of rho d by d rho of R, which is a function 

of rho plus 1 over F 1 over rho square d square by d phi square of f, let me bring the 

omega square mu epsilon term to this side, that is equal to minus 1 over z d square by d z 

square of Z; so each one of these terms must be a constant. So, let us do that, so firstly it 

implies that if this is a constant, let us call it as minus gamma square, I will tell you why 

I have done that, because I know the Z dependence of this equation, because we have 

seen that Z of z should go as E to the power minus gamma z. 

So, therefore, this quantity, if you assume this Z dependence has to be equal to minus 

gamma square, so this is solved, but then this gamma square will be taken to the other 

side, and omega square mu epsilon plus gamma square will me a new constant. So, I will 

be left with if you refer to this I get 1 over R 1 over rho d by d rho this quantity plus 

omega square mu epsilon plus gamma square equal to 0, so this is the equation that I 

need to solve. 
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I have now what is to be done is this, I need to now separate this, equation into a function 

of F and a function of R, and to do that I do the following, the so you notice that, I had 

this was my equation 1 over R 1 over rho d by d rho, and here if you look there is a 1 

over rho square there. So, clearly if I multiply this equation with a rho square all over, I 

will get 1 over F d square by d phi square F phi, and this term will then depend only on 

phi, and rho square will be multiplied there, and rho square will be multiplied here as 

well. Now, that will give me an equation of this type, I am not rewriting it, but us a just 

look at that equation again.  
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So, we have saying that rho by R d by d rho, I am multiplied the former equation by a 

rho square, rho d R by d rho plus this constant which was there omega square mu epsilon 

plus gamma square rho square that is equal to minus 1 over F d square by d phi square of 

F. The argument is identical this term is equal, to this term, so each one of them must be 

equal to constant, anticipating that this is a function of phi, I put it this constant to be 

equal to n square, what is n, I will talk about it later, but but that makes me solve this 

equation fairly literally. 

So, which gives me d square F over d phi square plus n square F is equal to 0 which of 

course, has the solution that F goes as A cosine n phi plus B sin n phi. Now, since I know 

that if phi goes to, phi changes by 2 pi for example, if phi is equal to pi plus let us say 

two times some integer, m times pi, then the solution must be the same, because that is 

like you know coming circling the cross section once or twice. So, this tells me that n 

must be an integer in order that, this function is single valid, so we have said n is an 

integer, now once you know, n is an integer you need to solve this equation, that is this 

quantity is equal to n square, this is the equation I am interested in solving. 
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So, this equation is written like rho by R d by d rho of rho d by d rho of R plus omega 

square mu epsilon plus gamma square, this has been multiplied with a rho square minus 

n square is equal to 0, this looks a bad equation, but this equation has been known to us. 

So, what we do is this that firstly, this constant is appearing to often, so let us just call it 



k rho or rather k rho square, now if you now do a slight change in the variable, that is 

instead of rho being the variable you take the variable to be k rho times rho. So, what 

you can do is this, you notice that then I will get, this equation you can simply split it 

into two terms d by d rho of this. 

So, I will get d square by d k rho whole square of R plus 1 over k rho rho d by d k rho 

rho of R plus, since I have divided everywhere by k rho square, I get 1 minus, the k rho 

into rho what I have taken as my variable, so I get 1 minus n square by k rho rho square 

equal to 0. Supposing, I put k rho is equal to some x, then this equation becomes a 

difference equation of this type, d square by d x square, this x as is not to be confused 

with the x axis, some variable x supposing R is written as y, then i get plus 1 over x d by 

d x of y plus 1 minus n square over x square is equal to 0, this equation is known as 

Bessel’s equation, this is the solutions of this are known as Bessel function, so this is this 

is, the nature of Bessel’s equation. 
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And for instance that you could take for instance n is equal to 0 just for convenience, you 

can see that this solution must be a power series in x, and the solutions of Bessel 

equations are given in terms of J n, that actually since, it is a second order differential 

equation. I have two solutions, one is called J n or the Bessel function, the other one is 

written as a N n or sometimes y n, this is called Neumann function, this is normal Bessel 

function; this is also known as Bessel function of first kind, and this is known as the 



Bessel function of second kind. So, that the solution for this R is a linear combination of 

Bessel function of first kind and the second kind in general. 

(Refer Slide Time: 42:06) 

 

Now, if you look at the way the Bessel equations, Bessel functions look like, you will 

notice like Bessel function of first kind is well defined at the origin, and actually is an 

oscillating function. 
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On the other hand, the Bessel function of the second kind diverges at the origin, and is 

also an oscillating function. 
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And we can sort of find out for instance, if you look at J 0 and n 0 their asymptotic form 

is this, these are oscillating forms. But I am looking for solutions which are finite at the 

origin, so therefore, I do not have this n contributing to my solution. 
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So, therefore, my solution for either E z or H z depend upon which mode you want, will 

be J n, n is an integer, a function of k rho rho, times this sin cosine which came as a 

solution on the phi equation, times E to the power minus gamma z. If I am looking at T E 

mode my E z is equal to 0, but the normal component of the magnetic field d H z by d n 



on the surface will be equal to 0; if I am looking for T M mode H z equal to 0, E z on the 

surface will be 0.  
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Let us look at the T M mode, so these are the conditions which I require, H z is this as I 

have earlier mentioned that I want H z must remain the same from phi becomes, you 

know changes by a multiple of 2 pi, so n is known to be an integer. Second point I have 

made is, only Bessel functions of the first kind are involved, so therefore, I have to only 

take J n, and that is why n I have removed. Now, this condition that if you take the 

normal component of H z, this is same as E phi, if you multiply with some constants, so 

you are differentiating with respect to rho that gives me a derivative of the Bessel 

function, and the remaining things are of course, already separated. 

So, therefore, E phi at the surface, namely when rho is equal to a will be equal to 0 that is 

a requirement, because the normal component of the normal derivative on the surface 

must be 0. And if this is to be 0, it means my derivative of J n at k rho a must be equal to 

0; now Bessel functions are some of the most well studied function, and so I have the 

incidentally I wish to point out that if you are looking at T M mode, the condition will 

not be on the normal derivative. But on E itself the tangential component of E in which, 

case you will not need the derivative of the, the zeroes of the derivative of the Bessel 

function, but you will need the zeroes of the Bessel functions itself. 
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But, let us look at this, so I want E phi a phi z equal to 0, which requires me to take J n 

prime k rho a is equal to 0. Now, the zeroes of J n as well as J n prime are well tabulated, 

so remember n is an integer 0, 1, 2 this m here indicates the first 0, the second 0, the third 

0, etcetera, actually this is only formally written down, this is not relevant. Because, if 

you take the first 0 of n is equal to 0, then you will find the entire field will be equal to 0, 

so therefore, this is actually the first 0 for J 0, and which occurs when the argument is 

3.3817. And the, this is, so this will be called a T E 0 1 mode, and likewise this is T E 0 

2, this is T E 1 1 2 etcetera, etcetera. 
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K rho square, now what I have done is instead of plus gamma square, because I am 

interested in the propagation, I have put it as equal to I beta gamma is equal to I beta, this 

is slightly reversed, so omega square mu epsilon minus beta square is what I have got. 

So, therefore, there is a critical frequency for propagation, because I want beta to be 

greater than 0, and clearly if I want this to be greater than 0, then there is a critical 

frequency, the which is given by because, beta square is omega square mu epsilon minus 

k rho square. 

And I want that, then omega c should be well omega is written in terms of 1 over root 

mu epsilon times k rho, and we have seen that what the values k rho can take, which is P 

n m prime which is gives me the 0 of the Bessel functions of derivative divided by a. So, 

that gives you the critical frequency, above which there is transmission, this is simply 

taking those structure of various things.  
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And trying to plot for example, one of these plots, let me take T is 0 1, this is a field 

distribution as you go along z, so notice that this sort of close back, and this is if you are 

on a cross section; theso these are these also tell you which components are non 0. So, 

with that we conclude our discussion of cylindrical wave guides, and we will spend the 

remaining two lectures in talking about elements of an antenna, which is used as a source 

for producing electromagnetic waves. 

 


