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In the last lecture we had introduced a concept called the displacement current. Just to 

recall, because it is a rather unusual idea, we had introduced, we had discussed the 

phenomena of charging of a capacitor.  
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This is for example, if I have a capacitor and I have a circuit where there is a battery of 

course, and a key. The when I switch on the key the charges move to this plate, and it 

will charge this plate as positive that plate as negative, and there is a current which is 

flowing through the external wire during the process of charging. So, what we did is to 

say that since there is a current in the external circuit, the region around this current is a 

source of magnetic field. Therefore, this is a region of magnetic field.  

So, as a result if I considered a surface which is cutting this wire, and find out what is the 

flux of the magnetic fields through that surface, then of course by the Ampere’s law, it 

turns out that integral of B dot d L must be equal to mu 0 i, where because there is a 



current which is passing through that. So, therefore the line integral of the magnetic field 

in any closed loop will be given by mu 0 times i. However, there is a problem; the 

problem came up because we had said that this, supposing I consider just a particular 

loop and this is the process of charging of current. and we said that this loop in principle 

could be filled up by any surface.  

So, for example, if it is a circular loop I could fill it up with a disk and in which case the 

net since the current is not equal to 0, what I find is that the your integral of B dot d L is 

equals to mu 0 times i. So, the point is that if you take this surface it is mu 0 times i, but 

on the other hand if I had the same loop, but I considered a surface like this, like a pot. 

Then because there is no current which is flowing through this surface, then what I get is 

the integral of B dot d L will be equal to 0 through the second surface. Now, this of 

course tell me that there is an inconsistency in the way we interpret this law.  

And so what we did or rather what Maxwell did was to suggest that the during the 

process of charging or discharging whenever there is a change in current, the dial the 

charges that are there in the dielectric medium between the capacitors now, they of 

course, result in a motion of the charges. I am not like the motion of the charges outside, 

but it can be shown that it is equivalent to a current at least dimension wise. And he gave 

it a name displacement current. The idea was that in the outside circuit there is a real 

current you can call it conduction current, but if you have taken a loop which is through 

the outside contour, but on the other hand surface is going through the capacitor plate 

then of course, that is not what happens. 
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So, the question was how how does one define this? 
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So, we said that inside the capacitor I have an electric field whatever be the say for the 

capacitor I have an electric field and which is let me take it as a dielectric medium. So, 

the surface integral of the vector D dot d s is the flux of the vector D. So, therefore the 

rate of change of this fix d phi E by d t which is equal to d by d t of D dot d s. And you 

remember that since this is D dot d s by divergence theorem, I can write this as del dot of 



D d cube r that is over the volume, but del dot of D is nothing but the charge so I get d by 

d t of a rho and d cube r.  

So, in principle this quantity has the dimension of charge because integral rho d cube r is 

the dimension of charge so d Q by d t is the dimension of current, only its origin is 

different. This origin is the the there is really no charge current which is passing through, 

but there is a displacement of the charges in the dielectric, and so these results in the rate 

of change of the electric flux being essentially having big equivalent to a current. So, 

when you are inside therefore, what you are done, Maxwell had done was to for various 

reasons, the word displacement is not particularly relevant but he had defined the rate of 

change of electric flux as the displacement current.  

So, in other words in the outside circuit there is a conduction current which is being 

supplied by the battery, when the current thing is being charged. In the inside the what 

we have is a rate of change of electric flux and that acts very similar to an external 

current. So, let us look at supposing I have a parallel plate capacitor.  
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Now, if I have parallel plate capacitor then the flux of the electric field is integral E dot d 

A or E dot d s and I know that the electric field is uniform and therefore, it is E times the 

area of the surface capacitor plates. And I know this strength of the electric field in a 

parallel plate capacitor is Q by epsilon 0 A that divide multiplied by A that gives me Q 

by epsilon 0. Therefore, the displacement current is given by 1 over epsilon 0 d Q by d t. 



So, this is what actually epsilon 0 I beg your pardon the displacement current is actually 

d epsilon 0 d phi by d t therefore, that takes care of this 1 over epsilon 0 there and I am 

left with d Q by d t. So, this is what we have been calling as the displacement current.  
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So, in the region between the capacitor plate, the electric field or electric flux changes 

with time and this has the same effect. Rewrite the integral of B dot d L now, which was 

equal to mu 0 times i and plus I have now adding epsilon 0 d phi by d t which is 

equivalent to A. 

(Refer Slide Time: 08:40) 

 



I could of course, convert this to a through the usual way of converting this to a 

differential form, that is right B dot d L as equal to del cross B dot d s so I get del cross B 

dot d s. And on that side I have current which is of course, J dot d s plus epsilon 0 and I 

have d by d t of flux is electric field dotted with d s. So, notice what I get is since this is 

arbitrary, I can convert this into del cross B equal to mu 0 J plus mu 0 epsilon 0 d E by d 

t. So, this is the time which we have been calling as the displacement current, but let us 

look at what are the various contributors to this del cross of B? The any current whatever 

be the source of the current can go into this J, we have already identified a few of such 

things.  

For example, we know that I we have of course, the free current that is the charge 

current. So, then we have also seen that there could be bound currents if I am looking at 

magnetized material, and we had obtained that bound current is given by del cross of M, 

the other possibility is that if there is a time variation in the polarization d P by d t which 

essentially gives me some sort of polarization current if you like. You can check the right 

dimension. Therefore, my total current which contributes to the first term in this equation 

is mu 0 J free, that is the usual charge current plus magnetizing current del cross M plus 

d P by d t that is which you have called as, and of course mu 0 epsilon 0 d E by d t which 

is my displacement current so I have all sorts of currents there. So, these three things 

taken together is what I have been writing as J. So, let us rewrite this in a slightly 

different fashion.  
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So, we have said that now del cross of B is mu 0 J free plus del cross M this is the bound 

current plus d P by d t plus mu 0 epsilon 0 d E by d t, we will write in a slightly compact 

fashion. Now, I could bring that magnetization term outside and divide all over by mu 0, 

so I get b by mu 0. Mu 0 is a constant minus M, so that takes care of this term as well as 

that term is equals to J free because I have already divided by mu 0. So there is nothing 

else and I am left here with epsilon 0 d E by d t plus d P by d t, which gives me J free 

plus d by d t of epsilon 0 E plus P.  

Of course, recognize that this is nothing but our definition of the vector d, so this was, 

then this will become J free plus d d by d t and this quantity here B by mu 0 minus M 

were defined as the magnetic field H. As we told, said earlier that traditionally it is the H 

field which has been called as the magnetic field, and the B field has been having 

different type of names like; field of magnetic flux density, magnetic field of reduction, 

but of course, we have been using them interchangeably assuming that there is no 

confusion.  

So, the this equation then has given me del cross of H is equal to J free which is the form 

we had before we introduce the displacement field plus d D by d t. With this we 

complete our last of the equations which is the Ampere’s, Maxwell’s modification to the 

Ampere’s law.  
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This is a good time to collect all the Maxwell’s equations together.  
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So, firstly of course, we had del dot of E is given by rho by epsilon 0, del dot of B is 

equal to 0; this are the two static relationship which you have not have not really 

changed. Notice that this pair are electrostatic and the magneto statics and the sources are 

the same. No magnetic monopoles so as a result del dot of B zero, electric charges exits 

so del dot of E is rho by epsilon 0. Then we had del cross E which in static case was 0 is 

now given by Faraday’s law as minus d B by d t del cross of H is equal to J free plus d D 

by d t. 

Occasionally you would also write this equation, as the del dot of D is equal to free 

charges. So, these are my four Maxwell’s equations which will form the basses of 

discussion in the remaining part of the course. But these, so these are four equations in 

six quantities. The six quantities are the three components of electric field namely, E x, E 

y, E z and B x, B y, B z the magnetic field. You must supplement these set of equations 

with what is known as a constitutive relation and this constitutive relations is the 

relationship between D electric field E and the polarization vector P, d is equals to 

epsilon 0 E plus P and H which is given by B by mu 0 minus M.  
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Frequently for convenience we will be dealing with what are known as linear materials 

and for linear material, linear electric or magnetic material for which the relationship 

between B and H or that between D and E will be linear. Therefore, the D is written as a 

quantity called epsilon the permittivity times the electric field, epsilon 0 was the 

permittivity of the free space, this is just the permittivity of the medium and the magnetic 

field B or the magnetic flux density B is given by the permeability of the medium times 

H.  

Once again mu 0 was permeability of vacuum, so these if you are dealing with linear 

magnetic material these would be the supplementary relations. At this stage what we are 

doing to do is to bring the potentials back, and see whether we get some advantage by 

writing these equations in terms of the potentials. 
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If we recall we had defined two potentials, one corresponding to the electric field and 

one corresponding to the magnetic field; of course, later under certain situations we had 

seen that even for a magnetic field, we could define a magnetic scalar potential. 
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But we will be dealing here with electric field being written as minus gradient of the 

potential V and the magnetic field B is the curl of the vector potential A. So, let us look 

at the two curl equations and see how what happens to that. So, we had an equation 

which is del cross of E the Faraday’s law is equal to minus d B by d t. So, what notice 



that since B is equals to curl a I can write this as d by d t of del cross A by taking the 

terms to the left side and writing so this can be del cross E is minus grad V and plus del 

cross A.  

So, this is what will, this is equal to 0 I am sorry this is d by d t of d A by d t, let me 

rewrite it. I get del cross minus grad V plus d A by d t. Now, look at this that if I have del 

cross, if I have del cross E plus d A by d t equal to 0, I should be able to define this was 

actually electrostatics. Now, if I look at this equation I will find that this is a more proper 

equation when I am dealing with, the time varying phenomena because this is 

questionable now. Therefore, if del cross of E plus d A by d t equal to 0. Remember in 

electrostatics I had in electrostatics I had del cross of E equal to 0, that is what gave me 

the definition that E could be written as minus gradient of E.  

But now, del cross of E is not equal to 0 so as a result it is this quantity which can be 

expressed as a gradient of a scalar potential. Therefore, what I do is instead of this I 

define that E is equal to minus that E plus d A by d t is minus grad V. So, as a result E 

should be written as minus grad V minus d A by d t instead of just minus grad V. So, this 

is this is the way we get express electric field in terms of a potential V and a vector 

potential A.  
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Now, if if I am in vacuum I know that del dot of E is equal to rho by epsilon 0 so del of E 

I will rewrite in terms of the potential. I am trying to express everything in terms of 



potential law so this was Faraday’s law and I am now combining it with the Gauss’s law 

of electrostatics. So, del dot of E is the same as minus del square V minus d by d t of del 

dot of A. Therefore, I can write this as del square V plus d by d t of del dot of A is equal 

to minus rho by epsilon 0. 

So, this is essentially contains the pair of equations namely the electrostatic Gauss’s law 

and the Faraday’s law. Now, let us repeat that job for the other pair of law law that we 

have so this is one equation which we keep aside for future. I have del cross of B which 

we discussed just now is mu 0 J plus the displacement current term mu 0 epsilon 0 d E 

by d t and B will be written now as del cross of A and E by whatever we had just now 

talked about, namely minus gradient of V minus d E by d t. So, B is del cross del cross A 

which I know is del dot del dot of A minus del square A is equal to mu 0 J, I do not do 

anything to that term plus mu 0 epsilon 0 d E by d t. 

And the idea is to remove the direct reference to the fields and replace them in terms of 

the potential so which is equal to mu 0 J plus mu 0 epsilon 0 d by d t of minus gradient 

of V minus d A by d t. So, let us combine these two by writing you recognize that mu 0 

epsilon 0 is 1 over C square, C is the velocity of light in vacuum. So, what we will do is I 

will write this equation by first writing a term which we will later on will see that looks 

like a wave equation form so del square A i take to that side. I get del square A minus 1 

over C square that is the mu 0 epsilon 0 d A by d t d square A by d t square plus rather 

minus a gradient of so I am brought this gradient term to that side.  

So, that is del dot of A and the other gradient term is here so I get, I have 1 over C 

square, this minus because of this common minus is going away and I am left with d V 

by d t, this is equal to 0. So, a rather clumsy equation, but let us look at this equation. So, 

let me write down this pair of equations in one place so that we can discuss it reasonably. 
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So, I have an equation which is del square V plus d by d t of del dot of A equal to minus 

rho by epsilon 0 and a second equation which is del square A minus 1 over C square d 

square A over d t square minus gradient term which is gradient of del dot of A plus 1 

over C square d V by d t is equal to 0. So, what have we achieved this equation is 

equivalent to two curl equations that we have written down. Now, the two equations of 

magnetism that we had written down, this equation came from Faraday’s law and then 

Gauss’s electrostatics. 

So, this is now what do you want to do is this, notice one thing that this equations are not 

decoupled. This is this contains both V and A, and this also contains both V and A, so 

what is the advantage that we have got? The advantage we have received so far is, 

instead of equations four equations in six quantities I have two equations in four 

quantities, I have vector potential which is a vector so I have three quantities there. I 

have a potential V which is a scalar so there is one quantity there, so I have got four, but 

of course, the equations are coupled. Now, so what we will do is this that we will try to 

do what is known as a Gauge transformation. 

Now notice one thing that we know that there is an indetermination with respect to 

definition of the vector potential that is I can always let A go to A prime which is equal 

to A plus A gradient of a scalar function and similarly, with respect to this scalar 

potential I can always add a constant. So, you notice that my electric field E was minus 



grad V minus d A by d t. Suppose, I let V going to V prime equal to V minus d psi by d t, 

then if I put in a condition that del dot of A plus 1 over C square d V by d t equal to 0 

suppose this quantity is put to be equal to 0, then these two equations will be decoupled.  

The reason why it will be decoupled you can see it, if del of A is 1 over C square d V by 

d t is 0, then in this equation I can substitute for del dot of A minus 1 over C square d V 

by d t, so that will give me del square V minus 1 over C square d V d square V by d t 

square. There is one d V by d t here, there a d V by d t there so that quantity will be equal 

to minus rho by epsilon 0. And if this quantity equal to 0 this equation already gets 

decoupled namely del square A minus 1 over C square d square A by d t square equal to 

0 equal to minus mu 0 J, well I should not have written it 0 it is equal to minus mu 0 J. 

So, if this condition is satisfied I get a pair of decoupled equation for my potential and 

this condition is what is known as Lorentz gauge.  
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So, del square del dot of A plus 1 over C square d V by d t become equal to 0 is what is 

called as the Lorentz gauge. So, in Lorentz gauge gauge my equations for the potentials 

are decoupled. The question is can I always ensure that such a condition is satisfied? The 

answer yes, the suppose for some reason I have got an A and a V which for which this 

equation is not satisfied. So, let me say del dot of A plus one over C square d V by d t 

supposing this is equal to sum function of position and time and this is not equal to 0.  



Now, in this case what I can do is to do a gauge transformation that is let A go to A 

prime which is equal to A plus grad psi and let V go to V prime which is equal to V 

minus d psi by d t. Now, what you do is now you return back to my original equation del 

square A minus 1 over C square etcetera and write this equation in this form. 
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So, what I get is del dot of A which is A prime minus grad psi plus 1 over C square d V 

prime by d t plus 1 over C square d square psi over d t square is equal to f of r t because 

this quantity this equation is the same equation as this equation I have simply said 

instead of A I have written in terms A prime and this. And if I am saying now that my 

new A prime and V prime should satisfy the Lorentz gauge equation, this simply requires 

that my side must satisfy this equation del square psi minus 1 over C square d square psi 

by d t square equal to minus f of r t and this is an equation which always has a solution. 

So therefore, if to begin with I do not have Lorentz gauge condition satisfied, I can 

always make a gauge transformation by which I can insist on that. Incidentally if you 

recall we had talked earlier about the Coulomb gauge. Now, what happens in Coulomb 

gauge is a the two equations there will be two equations there, but they mathematically 

little more complicated. So, I will just leave it for the moment and we will return back to 

a discussion of the Coulomb gauge later. A rather important theorem which I want to talk 

about today is what is known as the energy density to calculate the energy density of the 



magnetic and the electric field and talk about a theorem which is known as the Poynting 

theorem. 
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Now, firstly we all know let us have a collection of charge continuous collection of 

charge the electric energy is simply given by half of d cube x rho x, this is the charge 

density times phi of x. 
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And what we do is this we write this rho of x as del dot of d so this is equal to half of d 

cube x phi of x del dot of D. Now, what I will do is I will change this equation using the 



fact that del dot of a scalar phi times vector D can be written as phi times del dot of t 

what I have here plus grad phi dotted with D, and this term when I integrate over the 

entire volume since it is a divergence term I can always convert this into a surface 

integral. And since the potential and the fields must go go to 0 at infinity so the surface 

term will drop out.  

So, I will be left to them with a minus half integral d cube x D dot grad phi minus grad 

phi is nothing but the electric field therefore, this is half integral D dot E d cube x. So 

therefore, it tells me my volume has an electric energy density, which is u let me call it u 

electric that is simply given by D dot E by 2. I can do a similar job for the magnetic 

energy density and we had already seen last time that the magnetic energy of a collection 

of currents is given by half of volume integral of A dot J. 
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I use the fact that J can be written as del cross H so I write this as A dot del cross H d 

cube x and then I use the relationship of dot and cross product to interchange them. So, I 

will write this as d cube x H dot del cross A d cube x and del cross A is B, so this is half 

H dot B or B dot H. So, there is an energy density due to the magnetic field which is 

simply given by D dot H by 2. Now, for the next few time we will be dealing with linear 

magnetic material which tells me B and H are related therefore, this is written as d square 

by 2 mu and like that electric thing which was written as E dot d by 2 will be written as 

epsilon by 2 absolute E square.  



So, total energy density is given by epsilon by 2 E square this is for linear magnetic and 

electric material plus 1 over 2 mu B square this is for your linear medium. The total 

energy in the medium is obviously an integral over this quantity. 
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Now, let us now ask suppose in a volume in a closed volume I have both electric and the 

magnetic field so that I have got an amount of energy which we have just now 

calculated. Now, this closed volume can lose the energy in two ways, one is the 

mechanical way this is simply the joule loss, the and the other one is the physical 

radiation from that volume.  
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Now, the mechanical loss I can calculate, so my mechanical loss is simply power which 

is F dot v within that volume this is the rate at which I am losing energy d cube x and I 

know that the forces on the charge is given by rho E plus v cross B Lorentz force E plus 

v cross B Lorentz force dot v d cube x. v cross B dot v is 0 so I am left with integral E 

dot rho times v is J; therefore this is E dot J d cube x. This of course, you recognize as 

the standard joule expression. The other part is this, how do I calculate the radiation part? 

Now, for that what I do is this, I differentiate find out the rate of change of the change in 

the total magnetic energy that we have talked about.  

Remember u energy density which is epsilon by 2 E square plus d square by 2 mu. 

Therefore, if I take a d by d t of integral of this quantity I get, E square so I get well 1 by 

2 I have already written outside E square so I get 2 E dot d E by d t so I have got two 

epsilon E dot d E by d t plus I have got 2 by mu B dot d B by d t. This is integrated over 

the whole volume is the rate of change of energy in that volume. Now, what I will now 

do is this remember that I have two equations d B by d t I will replace from Faraday’s 

law that is minus del cross E and d E by d t I will replace from the Ampere Maxwell’s 

law.  

So, let us do that that is so half and 2 will go away, I will be left with epsilon E dotted 

with 1 over epsilon del cross H minus 1 over epsilon J, this is because of my 

displacement term I had del cross H equal to J plus epsilon d E by d t therefore, d E by d 



t is given by this plus 2 by mu I will write this as mu H and the d v by d t term as minus 

del cross E and of course, d cube x will be there. So, you notice I have got two 

expressions which are del cross term, epsilon will go away so I will be left with E dot del 

cross H minus H dot del cross E. 

And there is a term here which is minus E dot J of course, d cube x should be there. You 

can use the vector identity so this is also volume integral, to convert this into a del dot of 

E cross H term and of course, minus actually it is minus minus E dot J d cube x. And this 

term then del dot E E dot E cross H d cube x, I convert this into a surface integral of E 

cross H dot d s. So, this quantity E cross H is flowing out of the surface of the closed 

volume that we have talked about. So, if you combine this now and because of the fact 

that this equation is valid for an arbitrary volume.  
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So, instead of just d W by d t becoming equal to this I can write this equation as d E by d 

t plus del dot S equal to minus E dot J. This we had seen is nothing but the loss of 

mechanical power because of joule heat and things like that. Therefore, this del dot of S 

to represents the physical movement of energy across the surface of the closed volume 

that we are talking about. The S is given a name, S is equal to E cross H this is known as 

a Poynting vector. So, basically what we have done is to say that if I have an electric and 

magnetic field in a closed volume I have calculated what is the total energy?  

There is a contribution from the electric field which is basically E dot d by 2 d cube x, 

there is a contribution due to magnetic field which is H dot B by 2. We considered a 

linear medium for convenience and found out that the rate of change of the total energy 

has two parts. One a part due to joule heating which is basically the Lorentz forces which 

are acting on the charges, they are doing some work, so certain amount of energy is 

getting lost and the physical transfer of power through the surface of the volume, and 

that is what is known this statement is what is known as the Poynting theorem. 

It is possible it is possible to obtain a similar relationship on the momentum of the field. 

As we know that with an electromagnetic field we not only associate an energy, but we 

can also associate momentum. And just as we had seen that there are two parts to the 

total energy, one mechanical energy transport and another the radiative transport. The 

radiative transport is what you call as the Poynting vector transport. We will see that a 



similar relationship is applicable for the case of momentum associated with 

electromagnetic field as well. So, in the next lecture we will be talking about that and we 

will be returning back briefly to discuss the Coulomb gauge, and what is its influence on 

the potential formulation of the Maxwell’s equations that we did today. 

 


