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During the last few lectures, we have been talking about some special techniques, which 

solve electro static problems. We had seen that these special techniques are extremely 

useful, because of what is known as the uniqueness theorem while solving the Laplace’s 

or the Poisson’s equation which tells us that the solutions of these equations which 

satisfy a given boundary condition happened to be unique. These special techniques they 

allow us to guess a solution without having to rigorously find the solutions as we try to 

do in some cases. 

Method of images which we have been talking about is as we have seen we have applied 

to the case of plane conductors. In the last lecture we had seen how it is adapted to the 

case of spherical conductors.  
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Now in today’s lecture, we would like to use the same thing and take two different types 

of examples. One is connected with the cylindrical geometry. So, let us look at the 



situation where I have a line charge indicated by this red line here, and which is in front 

of a cylinder - metallic cylinder, which is grounded that is the cylinder is maintained at 0 

potential. The distance of this line charge having a line charge density of lambda per unit 

length from the centre the axis of the cylinder is taken to be equal to a. By symmetry we 

know that the image charge has to be also a line charge, and let us take it at a distance b 

from the axis. 

So, therefore I have a line charge of density lambda, and its image charge having a 

density let us say lambda prime. Now, this is a cross sectional view of what is 

happening? The situation is this that this is the red indicated the circle with a red at the 

centre is the original line charge, which is perpendicular to the plane of the diagram. The 

correspondingly the blue is perpendicular to the plane of the diagram as well having a 

line charge density lambda prime.  
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Now, we all know that the potential due to a line charge is given by minus of lambda 

divided by 2 pi epsilon 0 and therefore, the potential phi due to a line charge is lambda 

by 2 pi epsilon 0 minus logarithm of r. If you recall the electric field due to a line charge 

which we had found by using Gausses law was given by E equal to lambda over 2 pi 

epsilon 0 r. So, this is the corresponding potential of course, you could always add a 

constant but if I now, consider the line charge as well as the, its image charge.  



So, this gives you a if potential or a field at an arbitrary point P. Let us suppose the 

distance of this point P from the original line charge is r 1 and from its image charge is r 

2. Therefore, we write down the potential due to both as equal to minus 2 pi epsilon 0 

logarithm of r 1 which is the distance of the image of the original charge line from the 

point P minus lambda prime by 2 pi epsilon 0 logarithm of r 2. Now, what we do is this 

we use the standard triangle inequality, we referring back to this picture again. So, 

referring to this picture again you notice that the distance of the point P from the line 

charge given line charge is r 1 and from the image charge is r 2.  

I use the triangle law if the angle that is made by the vector r with the line joining the 

centre of the cylinder with the one line joining the axis. This point line charge is theta, 

then you can check that r 1 square is equal to r square plus a square minus 2 a r cos theta. 

Identically I have r 2 square is equal to r square plus b square minus 2 b r cos theta. So, 

what we do is this, that the potential then at an arbitrary point r is given by let me take 

out minus 1 over 4 pi epsilon 0 common. I have got lambda logarithm of r square plus a 

square minus 2 a r cos theta and plus lambda prime logarithm of r square plus b square 

minus 2 b r cos theta. 
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Now, notice that I require that the tangential electric field on the surface of the cylinder 

must be equal to 0.  
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So, as a result minus d phi by d theta at so if I take d phi by d theta on the surface of the 

cylinder, which is evaluated at r is equal to R. This quantity must be equal to 0. Now, 

this is fairly straight forward because I have logarithm. So, I get 1 plus 1 over a square 

plus R square minus 2 a R cos theta and of course, the differentiation of this 2 a R cos 

theta with respect to theta which gives me these numbers. There now, this expression has 

to be valid for all theta this expression has to be valid for all theta.  

You notice that since theta is arbitrary, I can cancel the sin theta from both sides of this 

equation and if I do say that these two denominators must lambda by this quantity must 

be equal to lambda prime by that quantity, I get this equation which says lambda prime b 

in to a square plus R square minus 2 a R cos theta is same as minus lambda a b square 

plus R square minus 2 R b cos theta. Now, if you make a statement that this is to be valid 

for all theta then obviously the theta dependent term here must go to 0. You notice that 

this is lambda prime b into a, and here also I have lambda into a into b. So, this tells me 

that lambda prime must be equal to minus lambda. that is the sign of the image charge is 

opposite to that of the real charge.  

Now, with putting that in and cancelling out this, what I am left with it is also then 

lambda is equal to minus lambda prime. So, I get b into a square plus R square is equal to 

a into b square plus R square. You can solve this equation for a and b and you get b is 

equal to R square over a. Notice the interesting thing this is precisely the expression that 



we had obtained when we found out the location of the image charge for the sphere 

problem. That was the point of the inversion. So, you notice here that even in case of a 

cylinder the image charges location is exactly where it was for the case of a spherical 

conductor.  

There is a however, in case of spherical conductor the charge that was induced that is the 

image charge magnitude was given by a different expression, but in this case it is very 

similar to the expression that you got for a plane conductor. That is the magnitude is the 

same and the sign is opposite of what it was. 
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So, this is one of the ways in which we solve the cylindrical charge problem. Let me now 

go to a slightly different technique and this technique is useful for the case of only for 

that two dimensional case. That is very special technique which is applicable and we 

solve two dimensional potential problems. This is known as the method of conformal 

mapping mapping. Now, let me let me try to sort of give you a little back ground to this 

because it requires what is known as the method of complex variables and as I have said 

it is the only useful in two dimensional situation.  
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Now, notice one interesting thing that I know that the electric field is given by minus 

gradient of phi where phi is a scalar potential. Now, if I am in two dimension, I have 

another quantity which I can define and that is like a scalar potential. I can define a 

vector potential. Now, I would like to alert you that at a later stage when we talk about 

magnetic field, we will come across this same statement. Namely that there is a vector 

potential at this moment, I am talking about a vector potential corresponding to an 

electric field and that is rather special it is not generally applicable, but one can use it 

only if your dimensionality is two and what we do is this. 

So, we say that let me define a vector potential A corresponding to an electric field by 

saying that let it be dell cross of a quantity called A. Now, I would like to recall for you 

that A cross product is actually a three dimensional concept. You do not only when you 

have three dimensions. I can talk about a cross product because when I talk about A 

cross B. Now, A and B are two vectors which can always be confined to a plane. But A 

cross B is a vector which is perpendicular to both A and B that is perpendicular to the 

plane of vector A and vector B. 

So, therefore it is on a third dimension. Now, you can only use the concept of a cross 

product in three dimensions. That is precisely what we are talking about so what we are 

saying is this that suppose, I have an electric field which is a directed quantity. Let me 

say that this this field is in two dimension, it is in let us say x y plane. Now, then I can 



define a vector A which is because my electric field is in x y plane. The vector A has to 

be along the z direction or parallel to z direction. Therefore, A must be equal to A times 

the unit vector k. Now, this vector potential then let me define for what am I getting for 

the x and y component.  

So, the x component of the electric field can of course, be written as d phi by d x, which 

is in terms of the scalar potential. But notice that this can also be written as del cross A s 

x component, which is a remember A only has z component. So, it is d by d y of A z 

which I will write as A. Similarly, E of y component of E which is minus d phi by d y 

which is equal to del cross as is y component which is d by d z of A x, which is equal to 

0 minus d by d x of A z which is simply A. So, you notice we have written electric field 

as either as minus d phi by d x or as minus d a by d y sorry this is plus and electric field y 

in the y direction is minus d phi by d y, which is identical to minus d A by d x  
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I will I will return to the significance of this equation as I go along, but let us talk about a 

little more about the complex variable, and then we will see what is the relationship 

between this.  
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Firstly we instead of the x y I want to talk about a complex variable complex variable z. 

Not to be confused with the z direction, that we are talking about this is defined in terms 

of real and imaginary part x plus i y. So, the this is my z now, when I look at the 

functions of x y in. If I am talking about complex variable then becomes functions of z 

and this will be written as a real part which is u depending on x y plus i times v 

depending upon x y. So, this is actually a an image of z going to f z and this is what we 

will call as w which is a complex variable so the image of the z plane is the w plane.  

Now, let us look at what it means in term of real and imaginary part so you notice this 

thing that the real part of f z which is real part of w which is equal to u so this this is 

written as x plus i y so x plus i y if you square it for example, let me let me illustrate this 

for the case of a special f z equal to z square is rather simple function. Now if f z is equal 

to z square then I can write f of z as equal to x plus i y square which is equal to x square 

minus y square plus 2 i times x y. Now, this is clearly the real part and this is the 

imaginary part. Therefore, I get u is equal to x square minus y square and v is equal to 2 

x y. Let us look at what does that mapping actually mean. Now, I have I have sort of 

shown this picture here. So, what I am doing is this, let me consider just a a function like 

this, a region which is given by this. They are not particularly good, but let us say this 

circular region. So, my in my original z plane let me redraw it here.  
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So, this is x this is y, I have families of circles. Now, this is what is drawn there. Now, so 

this is let me just call this as 1. So, this is 1 this is 2, this is 2 like that. Now, if you now 

do a mapping of f z equal to z square. Now, what you find is this, that if your f z is equal 

to z square, then this quadrant actually goes over 2 a half plane and the reason is not very 

difficult to see. Say for example, consider this circle. Now, if I want to use the polar 

coordinates for example, this circle is essentially given by you know the r theta 

relationship is a cos theta theta going from 0 to pi by 2 a cos theta or sin theta. But if I 

now do a plane like z square.  

Now, it is clear that this region will get transferred to or mapped on to a region like this 

and there will be I will similarly, get sequences of circles in the half plane. Now, you can 

see for example, supposing I consider two lines. Now, you can let me take for 

convenience that one of the lines is less than 45 degrees the other one is greater than 45 

degrees that with x axis. Then you will find that one of these lines will be like this, while 

the other line will be on the other one. So, let me draw one more area. Now, supposing 

you concentrate on a region in this picture. Now, this gets mapped on to a region like 

this. So, this is this is what is. For example, if you had a square in the original one, if you 

do a mapping it is fairly easy to see that this sort of becomes something like a distorted 

triangle. 
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Now, this is what we have been trying to talk about. Now, in discussing our techniques 

as applied to the electrostatic problem, we use what are known as well-behaved function. 

Now, an well behaved functions is one where when you are mapping neighbouring 

points in the z plane by the same transformation. Let us say f z equal to z square. They 

get mapped on to the neighbouring points in the w plane. So, the points which are close 

in the z plane remain close in the w plane. That is what is general this is a loose 

definition of what we are calling as a well behaved function. 
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Now, before proceeding further, let us recall the definition of a derivative, the way we 

have learned it with respect to real variable. Now, remember that in a normal function of 

a real variable x.  
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Let us say, when I define d f by d x, I say this is given by f of x plus h minus f of x 

divided by h limit h tending to 0. This is f is a function of real variable. Now, if you 

instead if you consider a function of complex variable, then I want to write down what is 

d f by d z. Now, I borrow essentially the same definition and instead of h. Let me write it 

as a delta z going to 0, I have f of z plus delta z minus f of z divided by delta z. Now, 

notice important difference between these two cases. Now, here we did not talk about 

how the thing goes to 0. So, let us look at supposing, I have a z plane this is the real z, 

which is the usual x axis and this is the imaginary z.  

Now, when z delta z is going to 0, supposing I am talking about going to 0 in this 

picture, you notice there are many ways in which I can go to 0. It can go like this, it can 

go like this, of course, it can go like that, it can go like this, this etcetera. Now, in dealing 

with the derivative of a complex variable it is very important to realise that this definition 

make sense, if the value returned is unique irrespective of the direction in which delta z 

goes to 0. 

This very important now, this as also have very interesting consequences as we go along 

and look at this statement here. So, I have got d f by d z. Now, suppose I take this delta z 



going to 0 along the x axis that is delta z is the same as delta x. So, I can write down f of 

x plus delta x y minus f x y divided by delta x. Since, f is u plus i v so I will write this as 

u of x plus delta x y plus i times v of delta x y and like this. Now, if you now split it up in 

to two parts you get, d f by d z is d u by d x plus i times d v by d x.  

Now, supposing instead you consider the way delta z is going to 0 is along the imaginary 

axis. So, then what I have is d f by d z is given by this expression here is i delta y there, 

which is the minus because I am dividing by i minus d u by d y plus i times d v by d y i 

is missing here. Now, notice that these two definition must be the same. 
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So, if you want to now equate these two definitions because the derivative is unique. 
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What I get if I equate the real part? I get du by d x is equal to d v by d y and d u by d y is 

equal to minus d v by d x. Now, these relationship, they are known as a Cauchy-Riemann 

condition and a function which satisfy Cauchy-Riemann conditions. These are known as 

analytic functions. Now, I would like you to compare these expressions with what we 

had obtained little while back. E x is equal to minus d phi by d x which is equal to d a by 

d y and E y was given by minus d phi by d y which is equal to minus d A by d y d A by d 

x.  

Now, if you compare these two expressions, you notice that the role of u and v are taken 

respectively by the potential phi and negative of the vector potential A that is the pair u 

and v essentially are the same as the pair potential scalar potential phi and the minus of 

the vector potential A. I do not put in a vector sign there because it is essentially a one 

dimensional quantity because it is only in z direction. Therefore, we notice that I can 

now think in terms of what I would call as a complex potential, where the real part is 

given by what we have been so far calling as the potential. That is the scalar potential 

and the imaginary part of that complex potential is given by minus that is the negative of 

the vector potential. That we have defined just now, that is del cross of A is equal to E. 

So, even this. 
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We define what is known as a complex potential.  
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So, let me define complex potential with phi, I mean w which is equal to phi minus i A. 

Now, suppose I have to differentiate this along the x axis. So, I get d w by d x which is 

equal to d phi by d x minus i times d A by d x, but this is nothing but minus E x plus i E 

y. Now, if you look at for example, the complex potential function w and we say that 

supposing I am looking at a lines of force. Now, what is what is meant by lines of force? 



Now, what will show just now is that along the lines of force the imaginary part of the 

complex potential remains constant.  

So, let us look at how does it work? I know by definition lines of force equations are this 

this is d y by d x because I know that the direction of lines of force, is along the tangent 

to the curve. So, d y by d x is E y by E x. Now, if you write it in terms of the complex 

potentials then this is minus d A by d x divided by d A by d y. Now, this tells me that d 

A by d x d x plus d A by d y d y, which is identical to d A that must be equal to 0, which 

implies that A is constant. 

What does it mean? It means that the if you look at a complex potential having a constant 

imaginary part, means that you are on the lines of force. Now, I leave to you to show that 

if the real part of the complex potential is constant. This refers to the equipotential, well I 

do not have a surface because I am in two dimension, but it refers to the equipotential 

lines. The the technique that we use is what is known goes by the name of conformal 

mapping. Now, let let me define what is meant by conformal mapping. So, we have 

talked about a mapping from the z plane to the w plane. 

Now, if the mapping is such that is preserves the angle between curves. So, on z plane 

you have some curves you are mapping it to the w plane. You look at the corresponding 

curves if the angle between them happens to be the same in both the magnitude. The 

sense, then the mapping is called a conformal mapping this is here. 
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This picture will illustrate what I am talking about. So, notice this are two curves and by 

some you know transformation this curve has become like this that curve has become 

like that. I draw the tangents in the same sense and you notice that this angle is the same 

as that angle this is what I would call as a conformal mapping now one of the things that 

you must realise, which I am going to not going to prove. 
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That is when you map things by analytic functions the example that we gave you z 

square that is an analytic function, it is a differentiable function. Therefore, I will take it. 

Now, when you do that, the mapping is conformal excepting in one case. Excepting if 

you are at critical point, that is a point where the derivative of the function becomes 

equal to 0. So, for example, if you take the function z square now, I know that the 

derivative of this function which is 2 z that becomes equal to 0 at z equal to 0. So, other 

than at z is equal to 0, the derivative of f z equal to z square does not vary anywhere in 

the complex plane, which means the mapping from z to z square is conformal, 

everywhere other than at the origin, because origin happens to be a critical point. 

 Now, this picture tells you that what what happens to these. See what we are done is this 

that I when I am the this z plane I am I am talking about x y. Now, suppose if I keep the 

imaginary pattern namely the y constant. Now, I am asking how does y constant translate 

when I am do the mapping? Now, this is fairly straight forward this has drawn using 



mathematical. So, I know that u becomes x square minus y square and v becomes 2 x y. 

So, this is this is what I am actually plotting.  

So, these are these blue coloured ones they actually have been drawn keeping y equal to 

constant, the imaginary part equal to constant which would correspond to the lines of 

force. The red ones are drawn assuming x equal to constant which will correspond to 

equipotential. So, this is this is the way the mapping would look like. 
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Now, so what what we are trying to say, we have seen that the electric field can be 

written as a derivative of either scalar potential or vector potential. By equating the 

relationship or how the x component of electric field or y component of electric field can 

be written in terms of this scalar and the vector potentials? We have found those 

equations are identical to the Cauchy-Riemann’s conditions for a complex variable. 

Since, they are identical to Cauchy-Riemann condition, I am using the method of 

complex variables. 

Now, I will illustrate the use of this, in the potential theory. We have not quite talked 

about that, how does it work? That we have talking about how does the Laplace equation 

coming to the picture? 



(Refer Slide Time: 35:15) 

 

So, notice this thing that when we note down the Cauchy-Riemann condition d u by d x 

equal to d v by d y or d u by d y equal to minus d v by d x. Now, since the order in which 

differentiations are taken is immaterial then if i for example, if I differentiate this with 

respect to y and differentiate this with respect to x and add them up, I find then I get del 

square u equal to del square v equal to 0. In other words the set of Cauchy-Riemann 

conditions are equivalent to Laplace’s equation the u and v are known as harmonic 

function. So, essentially solving a complex variable problem in two dimensions is 

equivalent to solving a Laplace’s equations in two-dimension. 

This is this is the relationship between the conformal mapping problem and the original 

electrostatic problem. Now, let let me give an illustration. Suppose, I am interested in 

finding out the electric field in the region between two conducting cylinders one of 

radius a, and another of radius b.  
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Now, we know that. I now, let me choose the complex potential u the real part to be 

equal to the scalar potential. Therefore, if I can solve the problem of u equal to constant 

this is same as solving the problem of phi equal to constant, that is the finding the 

corresponding equipotential surfaces. So, let let me illustrate this with this example I 

have got a an inner cylinder of radius a and an outer cylinder of radius b. Suppose the 

inner cylinder is at a potential phi 1, and the outer cylinder is at a potential phi 2. Now, I 

am interested in solving what happens to the region between a, and b. Now, firstly let me 

consider a complex potential of the type a log z.  

Let me, I will tell you in a movement. How do I infer this? Let me consider a complex 

potential, which is written like this remember. z is a complex variable and write this as 

equal to u plus i v. Now, I know that log z remember that in polar representation z is r e 

to the power i theta. Therefore, log z is nothing but logarithm of r plus i theta, where r is 

of course, equal to square root of x square plus y square and tan theta is equal to y by x. 

Therefore, I can write u is equal to A log r plus constant and v of course, is equal to 

simply A times theta. Incidentally let me say that the in this A is taken as a constant and 

not the vector potential that we talked about little while back. So, C, A and C are both 

constant. So, what we are interested now is to find out what happens to the potential in 

the region between. Now, look at this.  
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So, let me so let me take u is equal to phi. Therefore, phi is given by A log r plus C. 

Now, since phi is constant on the two planes r is equal to A and r is equal to b. I can 

write phi 1 is equal to a log a plus C and phi 2 is equal to A log b plus C. Now, the 

difference in these two potentials phi 2 minus phi 1, that will cancel out this. Unknown 

quantity C, that is equal to a logarithm of b by A, A log b minus b log a. Therefore, the 

constant A is determined in terms of the given potentials phi 2 minus phi A phi 1 divided 

by the logarithm of b by a.  

Now, I can use any one of these expressions to determine what is C. For example, C is 

phi 1 minus A log a. So, put this back there and you can show that this becomes phi 2 log 

A minus phi 1 log b divided by log A minus log b. Now, I have determined A and I have 

determined C. So, as a result my general expression for the potential phi is given by a, 

which is phi 2 minus phi 1 by log of b by a times log r plus the constant. 
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Which we have seen is given by plus phi 2 log a minus phi 1 log b divided by log of a by 

b, recall that log of a by b is negative of log of b by a. Therefore, you can sort of write it 

in a little more compact way. Now, let us look at the electric field which is minus d fi by 

d r, which is minus A by r unit vector r. Well actually this was known to us from the 

Gauss’s law and we concluded on the potential format from there. Now, once I know the 

electric field, I know that I can find out the normal component of the electric field, which 

is of course, the radial component and write it as sigma naught times the normal 

component, so sigma to the epsilon naught times normal component.  

So, sigma the charge density becomes epsilon naught times A divided by a. I am writing 

down this sigma on the inner conductor. I know that the charge on the inner conductor Q 

in is given by 2 pi a times sigma. So, as a result my A which is minus a sigma by epsilon 

0, can be written you just put sigma is equal to Q in divided by 2 pi a, so that becomes 

minus Q in by 2 pi epsilon 0. So, this tells me that the potential phi at an arbitrary point 

can be written in terms of the charge in the inner conductor divided by 2 pi epsilon 0 

times logarithm of r plus constant.  

I can write down now, phi 1 and phi 2. So, I write down what is phi 1, I write down what 

is phi 2 and can define the capacitance per unit length which is equal to Q divided by phi 

1 minus phi 2. Rather straight forward algebra and you will find this is given by 2 pi 

epsilon 0 divided by logarithm of b by a this this technique of using a complex variable 



method for solving two dimensional potential problem is very useful, sometimes very 

intuitive and we could of course, talk about more examples connected with this, But let 

us briefly summarise what we have done in the two or three lectures, what we have done 

is to say. 

That we are interested in solving the Laplace’s equation in charge free source free 

region, and Poisson’s equations in regions with their out sources. We have talked about 

the fact that solutions which satisfy a given boundary conditions are unique and we have 

been using in the last few lectures. Our intuitive ability to guess these solutions and we 

have made a statement that if we have a solution that solution must be necessarily unique 

using. This we have talked about the image problems, we have seen that in case of a 

plain conductor the image of a source charge a behaves like an image in a mirror, that is 

located at a distance d, which is exactly the same distance as the object is from the 

conductor. 

The same technique though in a slightly modified way was used for talking about 

spherical conductors. What we found in case of spherical conductors is that a very 

similar technique can be used by talking about an image, but however, the image does 

not quite behave the way it behaves in case of a plain conductor, but more interestingly 

in case of a spherical conductors, we found that there is a point of inversion and about 

which there is a beautiful symmetry. That is if I know the potential at a particular point 

in space due to a charge, which is located at a particular distance from the centre. We can 

relate it to a potential at a different point, that a point of inversion due to a charge which 

is also calculated from the same principle. 

So, that is the way the potential problems were solved in the spherical geometry. We 

found that in simple cases, we can use the image problem in case of cylindrical geometry 

as well that does not give either. The first case or the second case, but we found for 

example, in case of a cylindrical conductor, a line charge has a, an image charge density 

which is equal and opposite to that of the object charge density. But its location is like 

the case of a sphere. Having done that we have talked about conformal mapping and a 

conformal mapping is one which we have said preserves the angles of mapping.  

It is a techniques of complex variables, where what we have done is to find out the 

analogy of the complex potential which consists of a real part which is our usual scalar 



potential and an imaginary part which is the vector potential whose cross product gives 

me the electric field. We have found that the scalar and the vector potentials satisfy a pair 

of equation, which is identical to the Cauchy-Riemann condition for a complex variable. 

This allowed us to use the techniques of complex variable for the case of two 

dimensional problems, electrostatic problems. We found that if you put the imaginary 

part namely the vector potential to be constant, then what we are talking about is lines of 

force and if you put the scalar potential to be constant, you get the equi potential.  

These two are perpendicular to each other with this, we have come to the end of our 

discussion of electrostatics of the conductors. What do you want to do next is to talk 

about the electro statics. What happens if there are dipole moments in the medium? The 

dipole moments in the medium will polarise and they will have effect on how strong the 

electric field is. So, next lecture we will define what is meant by the polarisation and 

continue with electrostatics a little more. 

 


