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In the last lecture, we had talked about the coefficients of potential and capacitance. As 

we are getting into more formal aspects of electrostatics, we will be spending some time 

in looking at certain mathematical foundations; in particular, two equations of 

electrostatics namely the Poisson’s and the Laplace’s equation.  
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As we are aware that Laplace’s and Poisson’s equations are rather fundamental to 

electrostatics. So, if we have a charge distribution, if we have a charge distribution given 

by the density rho at certain points, then we are aware that according to Maxwell’s 

equations, the divergence of the electric field is given by the rho divided by epsilon 0. 

Now, as we defined the electric field in terms of potential, that is electric field is given 

by gradient of phi; where phi is a scalar function. We could immediately obtain an 

equation for this scalar potential; namely del square phi is minus rho over epsilon 0 del 

dot del. Now, this equation this equation is known as the Poisson’s equation. 



Now, supposing I have a region of space in which there are no sources of charge, now in 

which case of course, this rho becomes equal to 0, and my equation then becomes del 

square phi is equal to 0, which is known as the Laplace equation.  

Now, we have fundamental interest in looking at the solutions of these equations; that is 

situation where there exists charge density is given by Poisson’s equation and region 

which are source free; where the solutions are given by the Laplace equation. The 

solutions of the Laplace’s equation are known as Harmonic functions.  

What we intend to do today is to look at both these equations and look at some formal 

aspects of the solutions. As well as take some simple example and see how they give us 

the known results of electrostatics that we have derived from more elementary 

considerations. Once we have done that, of course we will go over to give you the formal 

aspects of the solutions of both Poisson’s and the Laplace’s equation.  
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So, let us let us look at first the what are the formal aspects. The since we deal with the 

del square operator, since we do it deal with the del square operator, We would in 

general be interested in knowing what is the three dimensional expansion of the 

Laplacian operator. 
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Now, in Cartesian coordinate this is very simple. So, for example, if I want to write 

down del square of phi; phi is the potential. In Cartesian coordinate, it is simply d square 

phi by d x square, that is partial, del square phi by d y square and partial del square phi 

by d Z square. And this is of course fairly simple. Now, very often we need to look at 

problems which show spherical or cylindrical symmetry. These will be the two most 

important geometries that will be involved with. 

So, for example if we look at spherical coordinates, as you were aware that in spherical 

coordinates we have variables which are r, theta and phi; just to recall for you, r is of 

course the distance from the origin. So supposing I plot this, my reference plane is X Y 

Z; r is the distance from the origin of a point P and O P O P makes an angle theta with 

the z axis. Then from the point p we draw a perpendicular to the X Y plane. And then I 

have this azimuthal angle phi which is my reference x-axis makes with the foot of the 

perpendicular that has been drawn from the P point through the point P prime on to the X 

Y plane. 

So r, theta and phi are my variables in spherical coordinates; phi is the known as the 

azimuthal angle. And so let us look at what happens to the expression for the spherical; 

for the del square operator in the spherical coordinates. We will not be deriving this 

because they do not really add to our knowledge, because they are can be found in any 

standard Mathematics text book. So, del square phi can be written as first the radial part, 



which is one over r square d by d r of r square d phi by d r. Then I have derivative with 

respect to theta, and that is r square sin theta d by d theta of sin theta d by d theta of phi, 

of course. And finally, the azimuthal part which is r square sin square theta d square phi; 

well, since I am using phi for the potential, let me write this phi in a slightly different 

way, that is, the azimuthal angle. So, it is d phi square. Well, I guess that is one of the 

reasons why many text book use v for the potential, but this should not cause much of 

confusion. So, that is that is our expression in the spherical coordinate. 
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And, the third geometry that we normally talk about is the cylindrical geometry. And in 

the cylindrical coordinates as you remember that our variables are rho, then of course 

polar; so, this is basically a polar two dimensional polar things and rho and theta are like 

polar angles. So, it is cylindrical will be rho, theta and z. So, Z is just the z axis which is 

same similar to the Cartesian thing. And rho, theta are the polar, the typical polar angles 

in the X Y line. And the del square operator in polar coordinate is 1 over rho d by d rho 

of rho d phi by d rho plus one over rho square d square phi over d theta square. And of 

course the z axis simply remains the way it is in the Cartesian coordinates. So, it is just d 

square phi over d Z square. Now, we will be using them quite liberally.  
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And, so let us look at first what is the formal solution of the Poisson’s equation. Now, we 

actually already know the solutions, but it is a good idea to sort of double check the 

electrostatic field or the potential that we know, which has been derived from Coulomb’s 

law. And that was simply that, phi at the point r is given by 1 over 4 pi epsilon 0, then 

the integral is to be taken over all the variables r prime in the entire space and whenever 

there is a charge density. So, it is rho r prime if the charge density is non-zero. At the 

point r prime, it comes with a rho r prime divided by r minus r prime modules and the d 

cube r prime. 

 So, the integration variable is r prime and we take the integral over all space. At points 

where there are no charge densities, d rho of r prime will become equal to 0. And so 

therefore it will not contribute to the integral. Now, let us look at whether this is indeed a 

solution of the Poisson’s equation. So, what we need to do is del square phi r. Now 

remember that, this del square is being taken with respect to the variable r of the 

potential, the argument of the potential function. So, this is one over four pi epsilon 0. 

Now, since the integration is over r prime, I can always plugin, take the del square inside 

and rho of r prime of course does not depend upon r. 

So, therefore del square operator which is a operator operation with respect to r does not 

take care of that. So, del square of one over r minus r prime d cube r prime. If you recall, 

we had shown that del square of one over r is given by minus 4 pi times three 



dimensional delta function of the argument. So, therefore, this is one over four pi epsilon 

0 integral rho r prime and so it is minus four pi. And since it is a three dimensional 

function, I write down delta cube of r minus r prime and d cube r prime. Recall the 

property of the delta function that, delta function if it is inside an integral, then it only 

contributes at one point; that is, the point at which its argument becomes 0.  

And, so therefore all that I need to do is to, wherever there is a variable r prime there, I 

need to put it as equal to r because r minus r prime becomes 0 there. There is a minus 

four pi, plus four pi; that cancels out. I am left with minus 1 over epsilon 0 and rho at the 

point r because of the delta function. As you can see that this is indeed the Poisson’s 

equation for the potential function phi of r. And so therefore I know that this is indeed 

the solution of the electrostatic problem.  
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Now before we go for some illustration, let us look at the general structure of these 

solutions. What are the general properties of these solutions? The one of the most 

important point is this. So, you know we are solving basically differential equations. 

Now, while solving differential equations we also need what we know as or what we call 

as boundary conditions. 

So, differential equations are always solved subject to certain boundary conditions. And 

so we are going to state a theorem which says that, that if you take Poisson’s equation 

and you have to solve that subject to a given boundary condition, then the solution of 



those equations will be unique. Now, the uniqueness has a great advantage. If you know 

that the solution is unique and if by intuition or by some other way, you can show that a 

solution or a given function satisfies the differential equations and the boundary 

conditions specified, then you know that those are or that solution is the only solution. 

So, now what is meant by boundary condition? Now, typically what happens is this. That 

supposing you want to find out the solution of the Poisson’s equation in everywhere in 

space, but in that space I have, let us say a set of conductors; we are aware that the 

conductors are equipotential. So, therefore if I have a set of conductors, I could specify I 

could specify the values of the potentials on those conductors.  
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And, of course I supposing in addition, there is an overall boundary to that volume, so 

for instance, I have a big bound volume like this; so, this is my outside boundary S. And 

let us suppose that these are some surfaces which are conducting surfaces. So, I specify 

that I know the potentials at S 1, S 2, S 3 and of course S. Now, I need to solve the 

problem potential problem; that is, the Poisson’s or the Laplace’s equation inside this 

volume, which is bounded by, which is exterior to the surfaces S 1, S 2 and S 3. Now, 

the uniqueness theorem states that the solution that you obtain will be unique, but before 

we go to a proof of that, it is not always necessary that the values of the potentials are 

given on S 1, S 2, S 3 and S. Instead, what we could have is we could specify the electric 

field, which is of course normal to the conducting surfaces. 



So, the boundary conditions which are there with us are of two types; so, the boundary 

conditions on which are applicable on these surfaces. So first is, we specify the values of 

the potential. The one you specify values of the potentials on the conducting surfaces and 

the boundary, these are normally known as the Dirichlet boundary condition. So, these 

are known as the Dirichlet problems. Now, if on the other hand you specify essentially d 

phi by d n normal derivative of the potential, which is nothing but the electric field 

subject to a sin, these are known as the Neumann boundary condition. 

So, what we are going to do is to prove that, solutions of Laplace’s or the Poisson’s 

equations subject to Dirichlet or Neumann boundary conditions will be unique. Now I 

must point out that, the type of boundary conditions that we have must be a one type; 

where you cannot have on certain surfaces Dirichlet and on certain other surfaces 

Neumann boundary conditions; because I mean, such a problem would be known by 

some other name like quasi boundary condition. And one can show that the solutions 

then need not be unique. So, let us look at what is it.  
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Now, so as the same picture is being shown on the screen, so let us suppose that the 

statement that we have made is not true.  



(Refer Slide Time: 19:12) 

 

That is, suppose phi one and phi 2 are two solutions of the same differential equation 

namely Laplace’s or Poisson’s. And let us also further state that they satisfy the same 

boundary conditions, either Neumann or Dirichlet. And so now, we are interested in 

finding out the whether this is possible. Now, let me define let me define a solution; 

general potential given by the difference between phi one and phi two. Now, since phi 

one satisfies the Laplace’s equation or Poisson’s equation, del square phi one equal to 0 

let us say. And Del square phi 2 is also equal to 0. This tells me that del square phi which 

is equal to del square of phi 1 minus phi 2; that must also be equal to 0. Now, this is true, 

whether phi 1 and phi 2 satisfy Poisson’s equation or Laplace’s equation. In all cases, phi 

one minus phi two, which is phi satisfies a Laplace’s equation. Now, since we have 

made...so, this is what we want to solve for phi my volume V. Now, since I know that on 

the surfaces S 1, S 2, S 3, etcetera, either Dirichlet or Neumann boundary conditions are 

valid. 

So, I have phi one. For example, if I am taking about Dirichlet boundary condition, then 

phi one on S 1, for instance, is same as phi two on S 1. And similarly for S 2, S 3, 

etcetera. Now, that means phi at S 1, S 2, etcetera must be equal to 0. Now the same 

situation is true, if instead of Dirichlet and Neumann, supposing I say d phi one by d n 

one on S 1 is equal to d phi two over d n at S 2, then again by subtracting we find the d 

phi by d n on S 1 S 2; whatever, sorry, this is same surface S 1. This must be equal to 

zero. 



So, you notice that once the boundary conditions are the same, the potential phi on each 

one of the bounding surfaces or d phi by d n on each one of the bounding surfaces must 

become equal to 0.  
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Now in order to prove this, let me take you back to some mathematical exercises that we 

have done in our first few lectures. One of the things that we proved, we called it Green’s 

first identity.  
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What we said there is that, supposing we have got two scalar fields given by let us say 

phi and psi, then If you take an integral over a given volume bounded by a some surface 

S of phi del square psi plus psi del square phi integrated over the volume, this is given by 

the integral over the surface which is bounding surfaces of phi d psi by d n d s. 

Now, recall that this is true this is true for phi, psi being arbitrary scalar functions. Now 

since they are true for arbitrary scalar function, I am going to do the following. I am 

going to take phi to be equal to psi as a special case, and equal to the phi that I have 

chosen, that is, phi of our problem.  

So, this phi is of course the arbitrary, but this is my potential; this is the phi 1 minus phi 

2. Now, so let us substitute it here and see what we actually get. So what do we get is, if 

you take this, this will be phi del square phi. So, I have phi del square phi plus del phi dot 

del phi d cube r; that quantity is equal to integral phi d phi by d n. I made a small error 

here. This term should have been del psi dotted with del phi for the first identity. 

Now, you notice. This right hand side is on the surface. And we have seen that on the 

surface, either phi is equal to 0 or d phi by d n equal to 0 depending upon the type of 

boundary condition you have. So whatever be the boundary condition, whether it is 

Dirichlet or Neumann, this quantity is equal to 0. Now, so that tells me that phi del 

square phi plus, well, del phi dot del phi is absolute del phi square d cube r; that is equal 

to zero. But remember that phi satisfies the Laplace’s equation; phi one and phi two 

could satisfy Poisson’s equation, but phi satisfies always Laplace’s equation. So, del 

square of phi 0. 

Now if del square of phi 0, this tells me del phi absolute square is equal to 0. And we all 

know that I cannot have an integration which is some of positive quantities only and get 

a value 0, unless each one of the term is equal to 0. So, which tells me that gradient of 

phi is equal to 0 which implies that phi one is equal to phi two, which is nothing but my 

statement of uniqueness. 

Now, what we will do is this. Before I go to formal solutions of this problem, I am going 

to be looking at some simple applications which you are all familiar with, and the results 

also we know. So, this is simply reconfirm or reassure us that, the solutions that we 

obtain by the mathematical process that we are going to elaborate now. Also, gives us the 

solutions which we are aware of from more elementary considerations. 
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So, let me first pick up or take the example of a parallel plate capacitor. So, they I have 

this parallel plate capacitor here. I have got two plates; one at…So, let me take the z axis 

as the vertical axis. So, I have a plate which is, let say at Z equal to 0. And this plate, I 

will be grounding it. And there is another plate there is a another plate at let us say Z 

equal to d, this is the separation between the plate. 

So, you notice that and let us make a statement that Dirichlet boundary condition is true, 

namely the upper plate is maintained at potential V 0 phi 0. Now, in the region in the 

region the region between the two plates they have no sources of charge. So, therefore in 

the region between the two plates, I have Laplace’s equation for the potential; which is 

del square phi. But remember that since I take the plates to be infinite in dimensions, the 

there is no x and y variation of any physical quantity that we care to calculate. So in 

other words, any variation that is there has to be only with respect to the z axis. So, this 

is nothing but this tells me this is simply d square phi by d Z square and that is equal to 

0, which is basically reduced to a one dimensional problem. 

Now, you can easily solve this equation. As we know that, this means d phi by d Z is 

constant. Let us call it A. And phi as a function of Z is then given by A times Z plus a 

second constant B. Now, we need to now supplement to the boundary conditions. So, at 

Z equal to 0, phi is equal to 0; which tells me that the constant B is equal to 0. Now, at Z 

equal to d, the value of the potential is phi 0. And you notice my equation is now because 



B is 0; that my equation is phi Z equal to A z, so put Z is equal to d. and on the left hand 

side put phi 0, which tells me that A must be equal to phi 0 by d. 

So, therefore the solution of this equation for an arbitrary Z is: in place of A, I must put 

phi 0. So, that is simply equal to phi 0 by d times z. So, this is the potential phi of Z as a 

function Z. And this satisfies the two boundary conditions that we have talked about. 

Now, I can calculate the electric field in the region between the plates because I know 

that minus the gradient; of course the gradient in this case is nothing but the derivative 

with respect to z. So, therefore the electric field is directed electric field is directed along 

the minus z direction and it is given by minus phi 0 by d times unit vector K. Now, 

which is consistent with the fact that my upper plate will have positive charges, and the 

lower plates will have negative charges; because this is connected to the earth. And the 

electric field, of course is constant in the region between the plates. 

Now once I know the electric field once I know the electric field, I can calculate the 

charge density on the plates. Now, while calculating the charge density you have to be 

little careful. You have to notice that the normal component of the electric field is the 

charge; gives me the charge density which is basically sigma, is epsilon 0 times E n. So, 

if you take the lower plate; since on the lower plate, the direction of the normal is along 

the positive K direction, so my sigma is nothing but minus phi 0 divided by d. And of 

course, there is an epsilon 0 there. And on the upper plate, however the charge density 

sigma is just the opposite because the direction of the normal is along the minus z 

direction. So, that will be plus phi 0 by d into epsilon 0. Having obtained the charge 

density, I can simply multiply to the area of the plate. Of course, strictly speaking we 

have taken the area of the plate to be infinite, but we can multiply it with the area of the 

plate and get the total amount of charge to be given by phi 0 d epsilon 0 by A. 

So, to get the charge and you know that, so the charge Q on either plate plus or minus, of 

course is area phi 0 d by d times epsilon 0. And you know that the potential difference 

between the plates is phi 0. And then this immediately gives me that, if I equate these 

two capacitance times phi 0, it gives you the your well known expression for the 

capacitance; which is A epsilon 0 divided by d. So, this is the simplest one dimensional 

parallel plate capacitor problem. Now, let us continue with different example.  
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Now, let me take an example of a cylindrical symmetry. Now, in a cylindrical symmetry 

I take a coaxial cable. I have shown on the screen. So, I take a coaxial cable of an inner 

radius a, and an outer radius b. And once again if you recall the expression that I had for 

the cylindrical geometry, this was given by here. Just recall back. So, this was 1 over rho 

d by d rho d phi by d rho, etcetera, etcetera. Now if my coaxial cable is infinite, then I 

have what is known as the cylindrical symmetry of the problem. And the only 

dependence of various physical quantities can then be on rho, which is the distance from 

the axis of the cylinders to whichever point we are talking about, along the X Y plane or 

in the X Y plane.  
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So, the equation that I need to solve, then would be one over rho d by d rho of rho d phi 

by d rho. So, this is my del square and this is equal to, well, let us say I take the 

Laplace’s equation in this case; suppose, it is equal to 0. I am solving Laplace’s equation 

because my inner conductor and the outer conductors are of course charged, but I am 

looking at the solution in the space in between where there are of course, no charges. So, 

density rho is equal to 0. So, this tells me d by d rho of this quantity. This is equal to 0, 

which tells me again that rho d phi by d rho is a constant. And let us write that constant 

as equal to some A. So, this gives me phi is equal to d phi by d rho is A by rho, which 

have the solution that phi is equal to A log rho plus another constant of integration which 

is B. Now, once again what I do is I earth the out... ground the outer conductor which has 

a radius b. 

So, therefore we say that phi at b is 0. Now, phi at b is 0; that tells me that 0 is equal to A 

log rho plus B. So, which is B is equal to minus A log rho. So, I need to of course obtain 

the constant A now. And that is done by… phi in the inner conductor has a value phi 0. 

So this, if I plug it into this equation, I get phi 0 is equal to A log rho plus B. So, phi 0 is 

A log rho plus B which is, well, we have a… what I should have done is, since b is equal 

to 0 I should have written it is A log b. So, it is A log b and here my phi 0 is A log a plus 

B, which is minus A log b. 



So, that tells me that A is equal to phi 0 divided by log a minus log b, which is log of a 

by b. So, that tells me that phi is given by… well, if you combine this you got A log rho 

minus A log b; which is nothing but a log rho by b. And of course the constant a is phi 0 

log a by b. So, what we get is phi is given by phi 0 log of rho by b divided by log of a by 

b. So, this is the potential. Now, once again I do exactly the same thing as I did earlier. 

Namely, I calculate the electric field which is nothing but the negative derivative of the 

potential.  
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So, the electric field E is minus gradient phi. But you recall that there is really no 

dependence in the theta and the z. So, this is nothing but minus d by d rho of phi times 

the unit vector. And this is of course fairly straight forward to differentiate.  

And so, you get phi 0 divided by the constant log a by b. And the log rho is to be 

differentiated. So, which is one over rho, and of course along the rho direction, well, the 

normal component of that now gives me the charge density, which is epsilon 0 E n. Now, 

once again you have to realize that the normal component for the inside conductor is 

outward, which is along the positive rho direction and the normal component for the 

outside conductor is along the negative rho direction. And so therefore, this is epsilon 0 

phi 0 divided… Now, I need to calculate the charge density on one of the surfaces. For 

example, supposing I calculate charge density on the inside surface, I get rho is equal to 

a. 



So, it is a log a by b. Now, these are charge densities. And you can essentially now 

calculate the charge per unit length. Remember that the coaxial cables are of infinite 

length. So, I need to calculate charge per unit length, which is simply obtained by 

multiplying the rho with the area and which is take a unit length and of course, whatever 

is the area of that. And that is the reason why the charge density on the inner and the 

outer surfaces are not symmetric. And that is because the outer one has a radius b. And 

so therefore, if you take the same unit length it has a much bigger area and the inner one 

has a radius a, which is smaller. 

So, you could multiply that. And then of course you know the two conductors are being 

maintained at a potential difference phi 0. And once again you can find out the 

capacitance of this cylindrical conductor. I leave the algebra to, you know to be done at 

home.  
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As a third example, let me take a spherically symmetric situation. They are all they all 

boiled down to… all these examples I am giving they all boiled down to one dimensional 

problem. So, once again I have a spherical capacitor as soon here, I have shown a cross 

section here, actually. The outer one has a radius b; the inner one has a radius a. And 

once again I have complete spherical symmetry. Now, spherical symmetry implies that 

there is no dependence on theta and phi. 
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So, I get my del square operator as we had given an expression earlier; as one over r 

square d by d r of r square d phi by d r. This is equal to 0. Now, which immediately 

means that d by d r of r square d phi by d r is 0. So, r square d phi by d r is a constant; 

which, let us call it as A. So, d phi by d r is A by r square, which gives me that phi is 

minus A by r plus a constant B. Now, let us let us try to evaluate these constants A and 

B. On the outer conductor, the potential value is 0. So, phi at r is equal to b is 0, which is 

equal to minus A by small b plus capital B, which is the constant; which means B is 

equal to A by small b.  

The second condition is, the inner conductor which is phi at r is equal to a; that is the 

constant phi 0. So, let us plug that in. So, this is equal to minus A by r is equal to A and 

plus B, which is instead of writing B, I will write A by b. So, which is equal to A times 

one over b minus one over a; which tells me that the constant a is phi 0 a b, well, by a 

minus b. But since b is greater than a, let us write it as a minus of b minus a. So, this is 

my constant. And as a result, my phi at any point r is given by, there is a minus sign 

already there, so phi 0 a b by b minus a times one over r plus the constant B. And the 

constant B we have already seen is a by b. So, which is phi 0 a b by b minus a, but with 

the minus sign here and divided by b; which means this b cancels out. 

So, this tells me that phi of r phi of r is given by this expression. But actually speaking 

you can sort of simplify some of these expressions a little bit. And get, for example, you 



will get phi 0 a b by b minus a. You have one over r there. And since there is a there and 

there is a a b there, so I get minus one over b there. So, this is the expression for the 

potential, in case of a spherical conductor. Let us complete this job.  
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So, the electric field which is minus gradient of the potential is phi 0 a b by b minus a. 

Derivative of one over r is minus one over r square, but there is a minus sign there; so, 

this into one over r square into unit vector r. Once again because of the way we have 

chosen our axis, the normal direction is the radial direction. The inner capacitor, the 

inner conductor has outward normal along the radial direction and the outer conductor 

has in the opposite direction. So, the charge density of the inner conductor is epsilon 0 

phi 0 a b by b minus a into one over a square.  

How much is the charge contained there? So, Q inside which will actually turn out to be 

opposite of the charge that is contained outside is simply obtained by multiplying the 

charge density with the area 4 pi a square. So, it is 4 pi; a square will cancel with this a. I 

have an epsilon 0 phi 0 a b by b minus a. Well, you can show that this is also negative of 

Q outside. So, the capacitance of a spherical conductor, which is simply obtained by 

dividing the charge in either conductor, magnitude of the charge in either conductor by 

the potential difference between them which is phi 0 is nothing but 4 pi epsilon 0 a b 

divided by b minus a.  



Now, suppose I have just a single conductor. Now, this I can do by taking the outside 

conductor to infinite distances; that is, if b is very large, then you notice I can neglect this 

a in the denominator and then this b will cancel out with that b and I will be left with the 

capacitance equal to 4 pi epsilon 0 times a. This is the capacitance of a single conductor. 

Actually speaking, this should not come as a surprise to us because if I have a single 

conductor, I know how much is the potential due to that, and the capacitance can be very 

trivially obtained from the expression for the potential of a single conductor.  

So, let us summarize what we did today. We spent some time today in talking about the 

formal methods of Poisson’s and Laplace’s equation. We proved that given for given 

boundary conditions, either of Dirichlet type or the Neumann type; what the Dirichlet 

means, give the potential values on the conductor and Neumann means give the normal 

component of the electric fields on the conductor. Give for a given set of boundary 

conditions, this solution is unique. And so what we did is to take simple exercises of 

problems which we had done in the past of a parallel plate capacitor, a cylindrical 

coaxial cable and spherical capacitors and solved them by this high power methods; 

which are of course not really necessary. But this sort of gives us a confidence by 

looking at the fact that the results are familiar to us. This gives us a confidence that this 

system works. In the next lecture, we will be talking about the formal solutions of 

Laplace’s equations.  


