Advanced Design of Steel Structures
Dr. Srinivasan Chandrasekaran
Department of Ocean Engineering
Indian Institute of Technology, Madras

Lecture - 34
Stability problems - numerical examples
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Friends welcome to the lecture 34 of the course Advanced Steel Design. In this lecture we are
going to learn more about the stability problems numerical example. We will deal with more
numerical examples in this lecture and learn couple of more with application to MATLAB

programs.
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Before that let us revise quickly, that my stiffness matrix of the member is given by; the
stiffness matrix is given by the basic equation which we should remember like that of a beam,

which is a 4 by 4 matrix, which is ri by li, this is ci ri by li and these two by li will be this.

So, 1 + ci of ri by li square and negative of this. The 2nd column is swapping of this and sum
of these two by li and the last one is negative of the previous one. The 3rd column is sum of
these two by li is also sum of these two by li and the 4th one is the next one is sum of these
two by li again. So, I should say 1 + ci ri twice, but introduce a new coefficient ti ok and this
is minus of that. The 4th one of course, is negative of the 3rd one this is what we should,

remember which is similar to what we have in the beam implication problem.
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Having said this let us go to the example 3, as you see on the screen here. So, this example is
about an orthogonal frame has got two members. One member is having lengths 2L the other

one is L. We have marked the degrees of freedom as you see here.

So, the degrees of freedom are marked as theta L and theta two unrestrained ok and
remaining all are restrained, we are neglecting axial deformation. So, restrained degrees, so it
has got unrestrained degrees 2, which are theta 1 and theta 2 and restrained degrees are let us
say theta 3, del 4, del 5, del 6 and del 7 which is about 5. So, the total kinematic degrees of

freedom is 7. So, each matrix will be 4 by 4 and we can try to find out this very easily.

So, now for the member k a b or k 1 ok, for the member k 1 I shouldsayr 1 okby2l,1+c1
clr1by2l So,1+c1ofrl by 2lsquare sorry by li square. So, that is 21 the whole square
ok so, the negative of this 1 + ¢ 1 r 1 by 21 the whole square. The 2nd column willbec 1 r 1
byl,r1byl, 1+c1r1 by2lthe whole square - of 1 + ¢ 1 r 1 by 21 the whole square with a

negative sign.

The 3rd column will be 1 + ¢ 1 r 1 by 21 or 21 the whole square. So, 1 + ¢ 1 r 1 by 2I the
whole square the 3rd oneis 2r1t1 1+c 1bylcube. So, I should say 2I the whole cube and
negative of this. The 4th column of course, negative of the 3rd column. So, we have this, let
us mark the labels. We will take the j th end here and k th end here for this member. So, we
should say thisis 1,3, 7 and 5; 1, 3, 7 and 5.



So, rotation at j th end, rotation at k th here, translation along positive y if I say this is my x
m, anti-clockwise 90 is my y m. So, this becomes my degree of 7 and this is my label 5. So, k
1 for the member ab is established of course, we have an EI multiplier outside. So, we can do

this. The next one is for the 2nd member k 2.
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So, let us do it for the member k 2 which is again EI times of again a 4 by 4 matrix. So, this is
going to be r 2 by 1, because you see the length of the member 2 is only 1. The length of the
member 2 isonly I. So,r2byl,thenc2r2 by, 1 + ¢ 2 of r 2 by | square.

So, let us mark the labels, look at this figure I am calling this as my j th end and this as my k
th end, this becomes my x m and this becomes my y m for the member 2. So, I should say the
labels are going to be 1, 2, 4 and 6. Let us mark them 1, 2, 4 and 6. Now, we can assemble

these two matrices and try to get k u u, the k u u will be partitioned at 2 by 2.
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So, now I am getting try to get k u u because I have set determinant to 0 of this. So, that is k u
u which is 2 by 2. Let us do this to be 2 by 2. Let us try to get this. So, we should look into
this figure 1 1 is I have here, so r 1 by 2 L. So, let we take, r 1 by 21, then do we have 1 1 here.

So, we have r 2 by 1 as well.

This is 1 one ok let us say 1 2 which is not in the 1st matrix, but 1 2 can be in the 2nd matrix.
So,12isc2r2byl,c2r2byl Thenletussay2 1,2 1is here, 2 1 is the 2nd matrix here ¢
2r2byl. So,c2r2byland 2 2 is here which is r 2 by | ok right. So, I want to set this
determinant to 0 to get my characteristic equation. So, if [ do that I am writing it here. So, r 1

+ 2 r 2 by 21 square - ¢ 2 r 2 by 1 the whole square should be 0.

So, this gives me the expression r 1 + 2 r 2 by 21 square into r 2 ok, into r 2 because we have
to product this r 1 by r 1 + 2 r 2 by 21 square into r 2 - this is set to 0, which gives me the
characteristic equation as r 1 equals 2 r 2 times of C 2 square - 1, this is what we call as my
characteristic equation, ok right. Now, I want to also see what my axial load is coming on the

section.
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So, if I say P critical of the 1st member ok look at this figure. For the 1st member this is 2P,
for the 2nd member this is P, is it not. So, 1st member this is 2P and for the 2nd member ok,
let us I think use square brackets ok which will be P. So, by this logic ¢1 should be 2P,
because ¢ is the ratio between the applied load and the Euler’s critical load which is pi square

EI by I square.

So, in this case it is 21 the whole square ok, which will become 8P by pi square EI by |
square, am I right? Similarly, for ¢2 which will be P by pi square EI by 1 square. So, by this
logic comparing equation 1 a and 1 b we can get the following relationship, which will be¢1

is 8 times of ¢2: equation 2. So, we got relationship we got k uu determinant as well.
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So, I am going to now satisfy these two conditions. What are the conditions? So, I have to

satisfy the characteristic equation which is given by r 1 is equal to 2 r 2 ¢ 2 square - 1 the

other condition is I must satisfy¢pl is 8¢2, is what I have to satisfy. So, let us run the

MATLAB program to do this. Let us now run the MATLAB program and try to obtain the

values ok, let us do that.
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1 %% This MATLAB code is for plotting the stability indices
2 % Re-type the following code in MATLAB new script and run
3 ¢cles

4 clear;

5 phi=0.01:0.01:4;

6 alrad = pi.*sqrt(phi);

7 al = radtodeg (alrad);

8 % Compression

&l r = (alrad.*((sind(al))-(alrad.*cosd(al))))./((2.*(1-cosd(
] ¢ = (alrad-sind(al))./(sind(al)-(alrad.*cosd(al)}); % rote
11 t = 1-((pi*pi*phi)./(2.*r.*(1+c))); ¥ Translation functior
12 outcomp = [phi' r' ¢' t'];

13 % for zero

14 outzero = [0 4.9 8.5 1.8];

15 % Tension

16 phit =10:-8 W1

17 alrad = pi.*sqrt(phit);

18 al = radtodeg (alrad);

-
waon

e
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¢t = (alrad-sinh(alrad))./(sinh(alrad)- (alrad. *cosh(alrad)”

tto= 1-((pitpi*(-phit))./(2. rt.* (14ct)));

outten = [-phit’ rt' ct' tt'];

% Stability chart

out = [outten; outzero; outcomp];

filename="StabilityChart.xlsx';

sheet=1;

xlsurite(filename,out,sheet);

phi = out(:,1);
= out(:,2); 5
= out(:,3);
= out(:,4);
figure;
plot (phi,r,"
xlabel("Phi‘);
ylabel('r');
grid on;
figure;

bbb

P

,'linewidth',2)
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52 phi2 = zeros(n,1); o
53 u=1;
54 for i=1:n -
55 for j=1:n B
56 if lhs(i) = rhs() .
57 r1 = r(i); i
58 cl = c(i); g
59 r2 = r(3); [ o
60 2 = cd); i»'
61 if -0.00001 <= (r1-(2%r2*((c2°2)-1))) <=0.00001
62 phil(u) = phi(i);
63 phi2(u) = phi(j);
64 uzu+l; B
65 end :‘w
66 end
67 end =
68 end
69 fprintf('Phi 1 = %6.2f \n',phil(1));

s &

£r

So, friends this is the program which you are going to run. You can see here the control
equation is this rl square ok r, let us say rl is equal to or r 1 - 2 r2 times of ¢2 square - 1
should be set to close to 0. We simply say exactly 0, we may not be able to pick up the correct

value of r1 r2 and c2 and c1 from the chart so, closely.
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60 T o
61 if -0.00001 <= <=0.,00801

62 phi1u) = phi(i);

63 phi2(u) = phi(j);

64 usu+l;

65 end

66 end

67 end

68 end

69 fprintf('Phi 1 = %6.2f \n',phi1(1));

So, let us closely pick up this and let us run this program. So, I get these charts, I think we
already have this charts with us, we know right. So, we know these charts of r i and t. So, the



answers aredl is 2.96 and¢2 is 0.37. So, I will go back here. So, I getdl asdp1 as 2.96 andd2
as 0.37.

So, for these values if you look at the chart, [ getr 1 as - 4.6727, I get t 1 as - 5.7540 and I get
c 1 as - 1.4628 and I get further r 2 as 3.4878 from the chart, t 2 as 0.6754 and c 2 as 0.6127.
So, now, I can interpret P critical asd1 times of pi square EI by 8 | square ok, 8 1 square. So,
we will be able to get the critical load because I knowd1. If I know if I know EI and length, 1

can get critical value (Refer Time: 20:29) critical ok, it is very simple and straightforward.
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Let us go to example 4; we will go to example 4. So, let us draw this figure here, one end is
fixed other end is hinged and this is also fixed. Let us call this as A, B, C and D, this is of two
length 1, this is 1 and this is | and this is member 1 and this is member 2 and this is member 3.

This is subjected to in horizontal load of 2P here of the whole problem.

Let us know mark the unrestrained degrees of freedom. So, I get rotation here theta 1, [ am
marking them in green rotation here theta 2, these are my two unrestrained degrees of
freedom. Let us mark restrained degrees of freedom theta 3 del 4 if I say del 4 and I neglect
axial deformation, I have del 4 here and I have del 4 here also. And this is del 5 ok, this is del
6 therefore, this is also del 6 because I am neglecting axial deformation ok and this is del 7

and this is theta 8 and this is del 9.

So, I have 9 degrees of freedom, the unrestrained degrees of freedom are 2, which is theta 1
and theta 2. The restrained degrees of freedom r theta 3, del 4, 5, 6, 7, theta 8 and then 9, so
which is 7. So, the total kinematic degrees of freedom are 9 and k uu will be of size 2 by 2,
because there are 2 unrestrained degrees and remember we are anyway neglecting the axial

deformation.

So, I can easily write k AB, I can write k BC, I can write k CD ok, assemble them and k k u
that is what I am going to do now. So, let us do that exercise, very clearly it is simple and we

can do that.

So, let us look at the labels for the member AB, let us look at what are the labels, we will take
the j th end here ok we will take the j th end here and mark it; j th end here and k th end here.
This is my j th end and this is my k th end. So, let us mark a table quickly, j th end is at B, and
k th end is at A and the labels are rotation at j rotation at k deformation or displacement along

positive y at j and positive y at k ok, let us do it for the member BC.

So, for the member BC, we will take the j th end here. So, j th end here and k th end here. So,
I should say the j th end is at C and k th end is at B and the labels are rotation at the j th end
rotation at the k th end displacement along positive y at the j th end and at the k th end. Let us
do for the member say BD ok, for the member BD. So, for the member BD which is
horizontal the length is of course, 21 we should remember that and we will take the j th end

here and the k th end here for this member.



So, the j th end is at B, k th end is at D therefore, the labels are 1 rotation, then 8, then 4 and
9. These are the labels; I do not think we have any difficulty in writing the stiffness matrices.

For all the 3 members let us quickly do that.

(Refer Slide Time: 25:42)
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So, I should say k AB is EI times of, similarly k BC is EI times of, similarly k BD EI times of
remember this is of 2 length 1. So, be careful about the length. We also know the labels let us
write the labels 1, 3, 6, 5, that is for the member AB, for the member BC, BC 2, 1,7, 6; 2, 1,
7, 6 and for the member BD we know the labels are 1, 8, 4, 9, is it not; 1, 8, 4, 9.

And we know the 1st value here isr 1 by I, thisisc I r1byl,1+c1ofr1byland- 1. This
isagainc lrlbyl,rlbylLl1+clofrlbyl-1+clofrlbylLl+clrlbylLl+clrl
by 1, 2 times of t 1 r 1 1 + ¢ 1 by 1 ok, these are all | square friends, I am sorry. This is 1 cube -

2tlr11+c1bylcube and the 4th column is of course negative of the 3rd column.

Let us go to member BC. So, it is goingtober2byl,c2r2byl, 1 + ¢ 2r2 by |l square; so,
c2r2bylr2byl1+c2r2bylsquare. Similarly, I +c 2 r2 by I square, 2 times of t 2 r 2
1 + ¢ 2 by 1 cube and - of this the 4th one of course, is negative of the 3rd column, I am not

entering it ok it is very simple to remember.

Let us go to the member k 3. So, it is going to be, [ will do it here r3 by 2l,1c¢3r3by21L
So, 1 + 1 3 of sorry, 1 + ¢ 3 r 3 by 21 the whole square and negative of this,c3r3 by L, r 3 by
2 1. So, 1 + ¢ 3 of r 3 by 21 the whole square negative of this. So, this will be 1 + ¢ 3 r 3 by 2,



1 + ¢ 3 r 3 by 2l this is going to be 2 times of t 3 r 3 1 + ¢ 3 by 2I the whole cube. This is
square is it not and this is negative of this. The last column of course, is negative of the 3rd
column we can know this. So, now, if you assemble k and partition a 2 2 this is going to be k

uu sub matrix.

So, now I should write k uu here, which is EI common of let me write this k BD somewhere
here. So, 1 2 and 1 2, I am writing k uu. So, I should say r 1 by I thatis 1, then I getr2 byl
then I also get r 3 by 21 ok, this one. Let us now do 1 2. So, 1 2 I can pick up from this which
is ¢ 2 r2 by 1, then I should say 2 1 2 1 I should pick up from here whichis ¢ 2 r2 by I, then |
should say 2 2, 2 2 I will pick up from here, which is r 2 by I, right. I should set this
determinant to 0. So, let us multiply this and - of this let us do that. So, I can write that which

will be, I will copy this matrix.

(Refer Slide Time: 32:45)
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Let me put it here, let me rub this. So, I should say r 1 by 1 +r2 by 1 +r 3 by 21 times of r 2
by I - ¢ 2 r 2 by I the whole square should be set to 0, am I right. Which will be equal to 2 r 1
+ 212+ 13 by 2l square of r 2 - ¢ 2 square r 2 square by | square is 0, which will become 2 r
1 +2r2+r3times of r 2 -2 c 2 square r 2 square should be 0, am I right. r 2 timesr2r 1 +

2r2+r3isequal to2r2 square ¢ 2 square.

So, let us say r 2 goes away ok, r 2 goes away. Wecansay2r1+2r2+r3isequalto2r2c
2 square. So, that is my characteristic equation, the control equation to develop this.

Furthermore, friends please see this figure, I should say the axial load on the member 1, the



axial load on the member 1 is 0, the axial load for the member 2 is also 0, the axial load for

member 3 is 2P compressive; am I right?
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Chad
— st 2 G

(O]

So, by this logic can I say¢p1 and¢p2 will be 0? Because P1 and P2 are 0, am I right. So, let us
say$3 yes 2P times of pi square EI by 21 the whole square, which will be 8P by pi square EI
by 1 square, let us keep this information with us to compute my critical load. So, I have got 2
control equations now, one is the characteristic equation, other is this relationship. I must now
select ¢ in such a manner from the chart to satisfy equation 1 and equation 2, this is equation

2 sorry and equation 1 is this.
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sablehuin ¢ sablacbin | siinple pitta | bt | #
a4 xlabel('Phi'); ‘a
45 ylabel('t');

45 grid on;

a7 % getting phi value condition: phil = phi2 =8

48 rl = 4;

49 r2 = 4;

50 €2 = 8.5;

51 RN (2%r2c2*c2) - (2%r2)- (2*r1);

52 n = length (out);

53 phi3 = zeros(n,1);

54 u=1;

55 for i = 1:n

56 if r3 == round(r(i))

57 if r(i)-r3 <=8.00001

58 phi3(u) = phi(i);

59 u=utl;

6 end

61 end

62

Let us run the MATLAB program and get the answer. So, now, I am running the MATLAB

program. So, this is a program friends. So, the control equation is this.
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a4 xlabe

45 ylabe

46 grid| -

47 %ge 0

43 rl =

49 r2=| = B

50 €2 =

51 3 =| N

52 ne L

53 phi3 = zeros(n,1);

54 u=1;

55 for i=1:n

56 if r3 == round(r(i))

57 if r(i)-r3 <=0.00001

58 phi3(u) = phi(i);

59 vzl

(] end

¥l 61 end

£, '

This is what we have. So, we can try to run the program and we get ¢ as 3.51 ok that is¢3 ok
3.5. So, we should say$3 was found to be 3.51 and the corresponding r 1 r 2 sorry ¢ 1 and t 1
r2c2andt2r3c3andt3 can be found out from the chart, I am not writing it here. So, we

can do that.

So, if you have this value as 3.51. So, I can write P cr is equal tod3 of pi square EI by 81
square. So, this is known, if [ know the cross section, if [ know the length and if [ know the E

value I can find the Euler’s critical, ok friends.

(Refer Slide Time: 38:33)




Let us do one more problem, example ¢ you can now see a single way single storey frame on
the screen. So, I can quickly write some inferences, the unrestrained degrees of this problem
are 2, which are theta 1 and theta 2 and the restrained degrees of this problem are 3, 4, 5, 6, 7,
8and 9.

So, 7 the total kinematic degrees of freedom is 9. So, k uu will be of size 2 by 2 because
unrestrained degree is only 2 and each k, that is k AB, let us say this is my A, this is B, C and
D. So, k AB will be of size 4 by 4, k BC will be of size 4 by 4 and k CD will be of size 4 by
4. Let us write down quickly the labels for this ok, let us quickly write down the labels. So,
let us make a table for the member AB, where is my j th end, where is my k th end ok and

what are the labels.

We will keep for the member A B we will keep this as B and this as A. So, the labels are
going to be quickly rotation at j, rotation at k, displacement at j and displacement at k. For the
member BC we will keep the j th end at B and this at C. So, the labels are going tobe 1, 2, 4
and 7 and for the member CD, we will keep the j th end at C, and this at D. Therefore, the
labels are going to be 2, 6, 9 and 8. So, friends I think we can write easily the stiffness

matrices of all the members, let us do that quickly.
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So, k AB will be E times of; sor 1 by, | +c1sorryclrlbyl,thenl+c1ofrlbyl-of
this. Similarly, ¢ I square so,c 1r1byl,r1byl, 1 +c1ofr 1 bylsquare and - of this. So, 1
+clrlbylsquare, ] +c1r1bylsquare, 2 timesoft1r11+c1bylcube - of this, the



4th column is simply negative of the 3rd column and the labels are 1, 3,9, 5;isitnot 1, 3,9,

S.

We can also write quickly for the member k BC, which is going to be E times of ok; r 2 by I,
c2r2bylL1+c2ofr2byl, -ofthislsquareokc2r2byl,r2byl,1 +c2ofr2byl
square negative of this. So, 1 + ¢ 2 r 2 by I square, 1 + ¢ 2 r 2 by 1 square, 2 times of t2r2 1
+ ¢ 2 by | cube - of this. And the 4th column will be negative of the 3rd column the labels are
going to be 1, 2, 4 and 7 you can see here 1, 2, 4 and 7.

So, let us do it for k CD, which is E times of we should remember the length is 21 in this case
is it not it is 2 no sorry, it is 2L in this case. So, we have to be careful ok even this also 21,
even this also 2 1. So, we should I think write 21, 21, 21, the whole square ok right; k BC is just
only | that is ok and k CD we can enter this, which will be I will do k CD in the next slide.

(Refer Slide Time: 44:30)

So, k CD EI times of which will be r 3 by 21, c 3r3 by 21 1 + ¢ 3 of r 3 by 21 the whole
square negative and this value will be 2 times of t 3r 3 1 + ¢ 3 by 21 the whole cube negative

s0, negative + of this column. So, the labels are going to be 2, 6, 9, 8 you can see here 2, 6, 9.
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So, we have all the 3 matrices, I can assemble them and get k uu which will be E times of ok
substituting we will get this as kuu. So, let us say for example, I should ok, should 1, 3, 9 and
5. So, I am looking for one more. So, I should get this and this. So,r 1 by 2l +r2 by 1 so, r 1
by 2l+r2byl. 1,2 and 1 and 2, let us do for 1 2.

So,12ishere,c2r2byl,c2r2byl So,letussay21;2lisherec2r2byl So,c2r2
by 1 let us go for 2 2, 2 2 are 2 places let us say r 2 by 1 ok r 2 by | + then we also haver 3

with 21 right. So, now, let us set this determinant to 0.
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So, I can write that that is going tober 1 +2r2 by 2l see here,r 1 +2r2by2linto2r2 +r
3 by 21 should be equal to I can say should be equal to ¢ 2 r 2 by | the whole square right, ¢ 2
r 2 by 1 the whole square. So, this gives me rise to the characteristic equation which will be r
I timesof 2r2 +r3 + 12 times of 4 r2 + 2r 3 should be equal to 4 r 2 square c 2 square,

that is my characteristic equation which I will use in MATLAB now and do it.

But further, let us also writed1, see the figure, ¢1 will be P, $2 will be P whereas,$3 will be
2P. So, let us do that. So, ¢1 will be P by pi square EI by 1 square, which is 21 whole square,
which will now become 4P by pi square EI by 1 square. Let us say$2 is P by pi square EI by 1
square whereas, ¢3 will be 2P by pi square EI by 21 the whole square which will become 8P
by pi square EI by 1 square.
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So, now I can write a relationship where¢1 is 4¢2 and¢3 is 8¢2 ok, let us run the MATLAB
program for the 5th problem.



(Refer Slide Time: 49:44)
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So, this is the 5th problem, we have the program here, we have the control equation which is
here. Set to close to 0 0 ok, not 0, 00 let us run this program, I get these are the charts of r t
and p, I getdl, ¢2,063 as you see on the screen. So, let us say¢2 is 0.38 andp1¢$3 can be
obtained. I will minimize this, I can now say¢2 is 0.38, I can find¢p1 and$3 does not matter.
So, for this I getr 2 ¢ 2 and t 2. I got r 2 as 3.4738 sorry 32, ¢ 2 as point triple 60 and this is
point. So, this is t 2 and this is ¢ 2 which is 0.6165. So, now, I can say P cr is$2 times of pi
square EI by 1 square, I haved2. If you know E, [ and I I can find P c.
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So, friends in this lecture we also learned 3 additional numerical examples to find Euler’s
critical law. This book is a very good reference which you must use for stability functions
derivation understanding more problems and computer programs and MATLAB, you can

download them, and this book is available in open access.

So, please see the book and try to use it for your library, recommend it to a library and use it
thoroughly. The MATLAB programs are available in this book, you can copy paste them and
run them these are the typical charts what you will see when you run the program. So, friends
practice more examples in stability problems and if you have any difficulty, you can always

discuss it in the forum, we will try to help you out.

Thank you very much and have a good day bye.



