Advanced Design of Steel Structures
Dr. Srinivasan Chandrasekaran
Department of Ocean Engineering
Indian Institute of Technology, Madras

Lecture - 30
Stability functions - 2
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Friends, welcome to the lecture 30 on Advanced Steel Design. We will continue to discuss
Stability Functions under axial compression, we will call selection number II on the same

perspective.
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In the last lecture, we derived equation 11 (a) which is expressed in terms of kpp and kqp. So,

here on the left-hand side you will see there is a term representing the slope (%) is the slope

of the v, is it not which is given as a function of kpp and kqp which is given by the equation 11

(a).
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We will copy this equation to the next screen and we anyway replace this with black color.

So, we will do this, 11 (a).

@x=0, % = ep which is equal to unity.

@x=L, —ZxL = Zero.

Substitute the above condition,

0= kpp[l - sin sin (O(i) — a cotcot (ai) COSs cos (ai) ] + kqp[l — @ cscesc (ai) CoS cos (ai) ]
Now, we know at x equal 0, % = Op because that is how we gave the rotation. This was the

beam under axial compression Pa and we gave a rotation which is unity and this was Bp we

gave.

That is how we generated k. and wesayk 6 ork andk ,thatishow we did, is it not.
pp ar rp p sp

So, we are given Gp which is equal to of course, unity, but we have Gp . So, let us say Gp



which is equal to it whereas, at x is equal to L the slope is 0, see here. @x=L, % = Zero. So,

let us substitute this condition and see what happens; substituting the above conditions.

So, let us say slope is 0. So, that is going to happen at x is equal to L. So, let us write that.
0= kpp[l - sin sin (ai) — o cotcot (ai) CoS cos (ai) ] + kqp[l — o cscesc (ai) COS cos (oni) ]

, Equation 12a.
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0= kpp - kppai[sin sin (ai) + cos cos (ai)w ] + kqp - kqp(xi cot cot (ai)

This was the equation, 12a. By simplifying,

— _ 1 B
0= kpp(l ai( sinsin (o) )) +k (1 —acotcot (ai))

o, —sinsin a,
kqp = sinsin (ai)—ocicoscos (ai) kpp

This was equation number 13; is very simple because you know this is expressed as cos by
sin. There is sin here, take a common denominator, multiply that with 0, the denominator

goes away.

So, rearranging you will get kqp. So, qulJ is given by equation 13, that is one of the coefficient

we have, rotation coefficient.
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Similarly, next condition at x is equal to 0, the slope is 1. So, substitute this condition in the

original equation and you will find now kpp. Call this is equation number 14. So, now, I can

express the rotation functions in terms of stiffness coefficients. Let us do that.
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One can express the stiffness coefficients, that is kpp and kqp. These are rotation coefficients;

as a function of rotation functions r and c.

Friends, if you remember kpp this was some function of EI by L and kqp is also some function
of EI by L. Here also you look at this equation kpp is a function of EI by L and kqp is a
function of kpp which is again EI by L. So, I am just trying to express this, only these kpp as
T and kqp as c.. We will call this equation as 15 (a) and 15 (b). These are called stability

functions, that is rotation functions for stability.

They are called as r and c.are called rotation functions for compressive axial load case. I can

take a special case of axial load zero and see what happens to these functions. Let us take a

special case of axial load zero and see what happens.
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Special case of axial load zero, that is Pa is set to 0. So, what does it mean? Immediately, it

implies a fact that a will become zero. So, when a becomes zero, look at the rotation



coefficients which we just now derived. There is a possibility of 0 by 0. So, one need to apply
L’ Hospital’s rule, let us explain the L’ Hospital’s rule very briefly for our learning, though

we have learnt it in mathematics, but still, it is important.
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Suppose, f(x) and g (x) are differential functions and g dash of x is not equal to 0 on an open
interval which contains that is except at a following conditions apply. Suppose, limit x tends
to a, f(x)= 0, limit x tends to a, g(x) is 0, or limit x tends to a, f(x) is plus or minus infinity,
limit x tends to a g(x) is plus or minus infinity. Then, it may reduce to a form 0 by 0 or

infinity by infinity, under such conditions following equation is good.
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Limit x tends to 0, f(x) by g(x) is equal to limit x tends to a f dash of x g dash of x, if the right
hand side of the equation exists. Let us say for example, limit x tends to 0 e power x minus 1
by x square plus x is our 0 by 0 form, but the denominator derivative is it not 0, is it not it
exists. So, I can say is equal to limit x tends to 0 d by dx of the numerator d by dx of the
denominator which is going to be limit x tends to 0 e power x by 2 x plus 1. Now, the answer

will be 1, for which the condition is the right-hand side should exist.

So, I’ Hospital rule uses derivatives to evaluate the limits involving indeterminate forms. It
states that for indeterminate functions, where the unity tends to form 0 by 0 or infinity by

infinity, the limit of that form is equal to the limited derivative itself.

For 0 by 0 form or this form, limit of the form is equal to limit of the derivative. L’ Hospital
rule can be applied any number of times until the function does not reduce to a condition
back again to 0 by 0 or infinity by infinity. So, we have a problem which is to be used in this

specific case. So, let us consider the rotation functions 15 (a) and 15 (b).
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So, let us copy those functions here. Let us rub this. As a reduces to zero or approaches zero
because we are considering no axial load case, is not that; both f(ai) by g(ai) approaches

zero. So, this will turn to a 0 by 0 form, is it not. So, I can apply L’ Hospital rule which will

give me the function value as T will now become that is r at q>i equal 0 will become 4 and c.

at cl)i becomes 0 is 0.5.
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Let us call this equation as equation 16. Similarly, friends by applying any rotation the kth

end, another set of stiffness coefficients can be derived.
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Now, by applying unit rotation of the k' end, another set of stiffness coefficients can be

derived. Let us draw the figure and understand that I am trying to apply unit rotation at the
k™ end. So, this is Bq which is unity and we know the length of the beam is Ll, and we have
already applied the axial load Pa. And, this is kpq, this is qu and this force of coefficient is

k andthisisk .
rq sq

So, I can again cut a section here, draw the free body diagram. Pa is applied here and Pa is
reciprocated here. And, there is a moment qu and there is force ksq which is actually equal to

k
— %qu. Why it is minus? I think you realize it there is a net moment of kpq + qu.

Here, the counteract that this will be the couple and this is opposite to ksq. Therefore, there is

a minus sign here.

So, you can follow the same logic and we can write the coefficients directly as here. I am

leaving it for learning, you easily do that.
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So, friends we have learnt the derivation of stability function, that is rotation coefficients

which are c. and T for two cases. Case 1, under axial compressive load Pa, 11 when Pa is tend
to 0 and we realize that in both the cases P is expressed as a function of PE. Why? We are
looking for stability functions. So, please look at the derivation back again and try to

understand that is very simple.

It has got involvement of differential equation understanding, have a parallel reading on some
text book on engineering mathematics. And, learn this and try to get a hold of the derivation.
The next lecture we are going to discuss about the rotation function and stability functions of

a beam under axial tensile load.

Thank you very much friends. Have a good day.



