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Dr. Srinivasan Chandrasekaran
Department of Ocean Engineering
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Lecture - 27
Euler’s load

Welcome to the 27th lecture on Advanced Steel Design which is now going to focus on
estimating Euler’s critical load. So, in the last lecture we discussed about the conditions for
stability. We defined stability, then we have also defined what is a critical load. Let us rewind

that slightly and understand what do we mean by a critical load.
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We can say the critical load is the axial load necessary to maintain the member in its initial
straight position. It is a classical definition which is given by Timoshenko and Gere in 1961.
The immediate question comes how do you estimate this critical load? Critical load is
computed based on the elastic curve equation. So, the elastic curve equation is classical

M

EI'"

2
theory, we know that Z 2=

X
We call equation number 1, where M is the moment, to be very clear bending moment, I is
the moment of inertia of the cross section and E is the modulus of elasticity of the material.

And, y and x are defined according to this figure which I am going to draw.
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Let us say I have the initial portion of the column this way. We apply a load here, then at any
section let us say this is my deflector profile and the load is now shifted here. The distance of
this shift is y whereas, this is my origin and this becomes my x axis and of course, this is my
y axis where I am measuring y in that axis. This is a free body diagram of the column

member.

M

2
So, now we understand %ZL = = let us go ahead. With reference to this figure, let us make
X

2
the following statements Z}; = %which I can say, this is equation number 1 E1
X

dzy
dx2

=M

dzy
dx2

which in my case is going to E1 = M=-Py. Why negative? Because, this is going to open

2
up the curvature, going to open up the curvature. So, E/ %{% + Py = 0.

2
So, we can now say % + (%)y = 01is a classical second order ordinary differential
X

equation, whose solution has got two components. The complementary function and the

particular solution. Since, RHS is 0 particular solution will be 0 in this case.
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We can write the complementary solution like y is let us say some variable

y = Asinsin (%) + B cos cos (%) : equation number 4. Where the above equation

P

alpha a = L~ /<, we call this as 4a. Say equation 4 has got two unknowns A and B, we need

to find out them. I can apply the standard boundary conditions and evaluate these constants A

and B.

So, the boundary conditions at x equal 0, y is 0. See here at x equals 0 y is 0 which implies

applying in this equation 4a, B becomes 0. Therefore, equation 4a is now written as

y = Asinsin (%) .



(Refer Slide Time: 08:40)

B e
= Adm@() 9. /

el h=o W |
(5""‘@0 o, ‘\

=2 my! wall o (gﬁ.“i;‘ar @»fflﬁcbf & ‘lPﬂ
I\C» 2, b d. - A 1Y

Aty Sk cy
o: K fr Moy
e [l —— ®

Let us supply next boundary condition. There is one more boundary condition at x equal to L,
y will be again 0. I have a column both ends position restrain, x is measured from here and
this is my y axis and the length of the column is L and the deflector profile of the column is

this under the load P. So, at x is equal to L, y is again 0 which implies A sin sin (a) = 0.

So, which means either A should be 0 or sin sin (a) should be 0. If A equal 0 look at the
original equation, there will be no lateral deflection, is it not. Hence, this is not applicable

condition. Therefore, setting sin sin (a) = 0, we know alpha « = nm for n equal 0, 1, 2, 3

£

etcetera. So, now we can say we already know that alpha a = L . So, let us say

nm = L %. Call this as equation number 5.
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This says n m = —— which says P = 7 for n equals 1, 2, 3 and so on. n equals 0 is

meaningless as this will cause no load, that is P will become 0. So, when there is no axial
load, the condition applicable is not effective. We call this equation as equation number 6. So,

equation 6 is termed as Euler’s critical.
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2 2
So, we can now say PE = n:—zEl for n equals 1, 2, 3 etcetera. So, we have now estimated the

Euler’s load. Now, let us try to find out the stability functions considering a standard beam

element.
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So, let us now consider a standard beam element and we neglect the axial deformation. Let us
consider the standard beam element which is fixed at both the ends. The standard beam

element. This is x axis, this is y axis, I put m indicating is for the member. We take a
. . . . . th
prismatic section so, EI is constant and this becomes my span of the member of the i
. th . . .
member Ll,. This is my i member. So, there are some sign conventions which we have to

follow.

So, let us see what are the sign conventions. (1), the end moment, joint rotation and joint
moments which are anti-clockwise or positive. The convention (2), upward force or
displacement is considered positive. (3) Force or axial displacement towards right direction is

considered positive.
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(4), upward end shear is positive. (5), right direction force acting on the beam at the ends is
positive. So, these are some sign conventions which we will be following. So, let us mark

them. So, we say at any joint anti-clockwise, upward towards right or positive.
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Now, let us consider a fixed beam undergoing deformation due to bending. We neglect the
axial deformation in the member, that is deformation along the axial of the member is
neglected. Now, the standard beam is what is shown here, the standard beam. Let us draw this

figure again and mark it here. This is my origin, this is my x axis of the member,



: . . . th . . .
anticlockwise 90 degree is y axis, the i member. This member has got uniform cross section

El, span of the member is Ll, and this is considered as a jth end of the member. This is

) th
considered as a k  end of the member.

So, there is a order by which we mark this x axis and y axis, identify the origin, mark the x

direction or x axis along the length of the member, y axis is anticlockwise 90 to x axis and
mark on jth and k™ end of the member. And, very interestingly xy plane defines the plane
of bending of this beam element. Neglecting axial deformation; now, we have to identify the

degrees of freedom for this beam. Let us mark them.
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So, I am marking the beam again. This is my X I know how to mark y - This is my jth end,

th . . . . . . .
k"~ end, prismatic cross section, length of the member is Ll, and this member is actually i. So,

let us mark rotation at j as Bp, rotation at k as Gq, vertical displacement at j along positive m is
: . th . .

8r and vertical displacement at k  along positive y s 85.

So, we are just marking these dimensions. I want to derive the stiffness matrix of this. So, to

do that I have to apply unit rotation. So, let us quickly revise and understand what is stiffness

coefficient; kij 1s the stiffness coefficient of the stiffness matrix k.



This is defined as force in the i"" degree of freedom for unit displacement in K degree of
freedom, keeping all other degrees of freedom restrained. This is very important condition.
So, I must give unit rotation at all the degrees of freedom 1 by 1 and try to find out the forces,

that becomes a stiffness matrix. Let us draw those figures.
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So, we will draw 4 figures. Let us mark the unit rotation at the j end and draw a tangent,

measure the angle from the axis. I call this as Gp and let the Gp be unity. So, now this will
invoke forces. I call that as kpp, this as kqp and this reaction as krp and this as ksp. So, friends
let us pay attention to the subscripts of this.

The first subscript indicates where do you measure, the force the second subscript indicates

where do you give the unit displacement. Like look at this figure. This is p, this is q, r and s.

. h .. . h .
So, I am measuring force at the pt end. For giving displacement the pt end so, it is kpp. Iam

measuring force at the qth end for displacement at the pth end so, kqp. Similarly, I get krp and

ksp. Let us call this figure number (i).

. . : : th
Let us go to figure number (ii), I want to give unit rotation at the k= end. So, draw a tangent

from the axis measure in the anti-clockwise direction call this as Gq that is unity. So, the

corresponding forces will be qu kpq qu and ksq. You will obviously, see the second subscript



indicates the degree of freedom label where unit rotation is given. The first subscript

indicates the degree of freedom, where the force is measured. I call this figure number (ii).

So, figure (i) and (ii) in fact, figure (i) refers to unit rotation at ]t end correct, figure (ii)

. . h . . o th
refers to unit rotation at k' end, is it not; can also give unit displacement at the ]t end. Let us
say I want to move this end by unit displacement that is here. So, I want to give this

displacement delta as unity which will be nothing, but Sr is unity. So, now, I do not want to

give displacement any other end.

Therefore, the displaced position will be this. It is a straight line. Let me rub this and redraw
again, it is a straight line. Let me draw an axis normal to this. Let me call this angle as o = %
, because this is L and this is unity. Now, the angle between the normals will be equal.

Therefore, friends this angle will also be %, same as this angle.

So, now this will invoke forces in the pth degree, I call this as kpr. In the qth degree I call this

: h : . .
as qu, in the 7' degree I call this as krr and this as ksr. The second subscript refers to the
place where we have given unit displacement. Similarly, let us say this unit displacement is

figure (iii) at jth end. Let us draw figure (iv) by giving unit displacement at the K" end.

Let us do that. So, let us give unit displacement at the k™ end. This delta equals 1 which is

actually equal to 85 which is unity. And, this becomes my new axis of the member, let me

1

draw normal to this. So, if I say this is a = —

and we all agree that this angle will also be 1
by L as well as this angle. This has invoked forces as kqs kps krs and kss. Friends you must

wonder how am I marking the arrow directions of the moment and then the axial reactions.

So, please note here I have given an unit anticlockwise rotation to this. So, the moment is

applied on the same direction, same direction is transferred here. Similarly, I have given

. . . th . . . . . .
anti-clockwise rotation at the kK end, in the same direction moment is applied to cross this

rotation, the same is transferred here. Whereas, in figure (iii) I have given upward

: .. th
displacement towards positive y at the j end.



So, I want to bring this position back to normal. So, this is calling it back anti-clockwise.
Same is applied here to qu. When I come to figure (iv) kth end has moved up. So, I want to
bring it back. So, calling it back kqs will now become clockwise. The same will be applied to

ps and I am marking these reactions rp, sp etcetera similar to the degrees of freedom which is

originally in the fixed beam.

. T th h . . .th
So, now we have given unit displacements at ]t end, k" end and unit rotations at the ]t end

and k™ end, is it not. And, we have also marked the corresponding forces at both the ends ]

and k in all the 4 cases. Now, looking at this figure, we can write a statement.
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The unit rotation and displacements invoked forces and moments at j and k ends of the

beam. Now, to maintain equilibrium, the governing equation should be applied. What is that
equation to be applied? I should say moment at pth end should be some of force at pth end

due to Gp, force at the pth end due to Bq, force at the pth end due to 8T and force at the pth end

. . th
due to 85, is it not. You can see here kpp kpq kpr and kps or the net forces acting at the j end

due to arbitrary displacements qu 8r and 85 given in cycle, is it not.

m =5k 0 +k 06 +k 8§ +k b
P pp P Pq q prr ps s



m =k 0 +k 6 +k &6 +k 6
q ap p aq q qrr as s
P, = krpep + queq + krr8r+ krSSS

p =k 0 +k 0 +k 5 +k &
S spp sq q srr ss s

So, this equation should be valid. We call the equation number for example, we will continue

with the new numbering. We call this equation number 1. Similarly, I can write the equation

for m which is now at the qth end. It should be the force at the qth end because of Bp, force

at the qth end because of Gq, force at the qth end because of 8r and force at the qth end

because of 85. Then, can also find the reaction.

Let us call this as p r is the force at the qth end, force due to Gp, force at qth end due to Gq,
force at the rth end due to ST and sth end due to 83. Similarly, p s will be force at the qth end
due to Gp, force at the kth end due to Gq, force at the P end due to Sr plus four force at the

h
st end due to 83.
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Now, we can write this in a matrix form. We know that

{mi} = [ki]{Si}, {mi} is a vector, [ki] 1S a matrix, {Si}is a vector. I call this equation number 5.
So, where {m} is m, mqprand P, where [ki] is a full matrix and {Si} is Bp eq 8r and 85.

i
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So, let us see what is this matrix which will be a 4 by 4 matrix. This will be the pth, qth, o

th th th th th .. . th
and s columns;p ,q ,r ands rows. So, this is kppkqpkrpksp itisap column. So,

k k k k theq” column k k k k ,ther™ columnandk k k k ,thes" column.
q pr qr rr sr ps qs rs ss

tm = [k {3

{mmpp}z[kkkkkkkkkkkkkkkk]{eeses}
1% q T S pp pq pr Dps qp qq qr qs rp rq rr rs Sp sq Sr SS 1% q r s

So, our job is to find out this matrix, which will be the elemental property based on the

geometric and material characteristics of the beam member. Now, let us pick up the figures

back again. So, I will copy this page, put it here. Now, friends for unit rotation given at the jth

end, I develop kpp and kqp. I can say this krp is actually equal to because the net moment now

generated is kpp plus kqp.



So, krp can be simply said as kpp plus kqp by I, where this is my | and ksp will be opposite to
krp. So, I can write here, this is equal to minus of krp. So, this direction will be reversed
because, this is now going to cause a couple which will counteract this moment. So, krp and

k  dependson k and k only. If I know k and k , I can find the end reactions k_ in
sp pp ap pp ap ™

ksp. Similarly, let us go to this case (ii).

So, now, this is invoking an anti-clockwise moment of kpq and qu, this will be counteracted

by a couple which is k and k . So, k willbenow k plusk bylandk withaminus
rq sq rq Pq aq sq

of qu. Now, this will be get reversed. We have now expressed these reactions in figures (i)

and (ii) as a function of the moments pq and qq. Similarly, I can also find or express these

reactions as a sum of kpr and qu.

Friends, please understand we are trying to express the reactions in terms of the end
moments; we have done with figure (i), we have done with figure (i1). We will do the figure

(ii1) and figure (iv) plus the moment. We will do that. So, we will do it in the next lecture.
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We will write a summary here. In this lecture, we learned how to estimate Euler’s critical

load which is called as PEu - We have also started understanding the derivation for

ler



standard fixed beam and forming the stiffness matrix for this beam from 1st principles. We

will continue in the next lecture and attend to this in the next lecture.

Thank you very much and have a good day. Bye.



