Advanced Design of Steel Structures
Dr. Srinivasan Chandrasekaran
Department of Ocean Engineering
Indian Institute of Technology, Madras

Lecture - 23

Plastic analysis -3
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Friends, welcome to lecture 23, which is Plastic analysis III where we will learn few

examples to estimate collapse load. We will use both the static theorem and the kinematic
theorem to solve the problems. We will start with simple examples and see how we can

understand this theorem applications.
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So, example 1, we consider a fixed beam with central concentrated load, we call this load as
W. So, I have a beam which is fixed at both the ends with the central concentrated load W, let
me name the points as A B and the midpoint as C and we say this span is equal and this is 1 E

commalA.

So, as per the static theorem we have first to draw the admissible bending moment diagram,
for a fixed beam we know if this is my base line. So, there is a fixed moment which is equal
to WI/8 negative bending moment, then there is a positive bending moment which is the

midspan is equal to W1/4.

I superimpose these on the same side. So, I draw the negative bending moment diagram here
and the positive bending moment diagram I just swap it like this. So, this is negative and this

is positive again negative, we already know that this value is W1/4.

So, now the critical sections are at three different places. The critical sections can be here, can
be here, and can be here. So, what is the static degree of indeterminacy for this problem let us

ask a question what will be the static degree of indeterminacy for this problem.

The static degree of indeterminacy for this problem is 2 by neglecting axial deformation that
is 4 are the unknowns moment, reaction, moment, reaction. There are two equations of
equilibrium X fy = 0 and £m=0. So, the degree of indeterminacy becomes 2 by neglecting

axial deformation.



So, I need 3 hinges to get a mechanism, let us say these are my 3 places where the hinges can
form. So, the governing equation now going to be 2 Mp because this is also Mp this is also
Mp hinges is formed here. So, 2 Mp should be equal to W1/4. Therefore, Wc which I said W
will be 4 into 2 Mp by 1 which is 8 Mp by 1. So, that is my collapse load.

Ultimately we assume that, hinges are formed at three places hinges are formed at A B and C.
making it as a complete mechanism, is it not? I need 3 hinges I got 3 hinges. On the other
hand let us try to solve this problem using kinematic theorem. So, I have a fixed beam

subjected to central concentrated load W the locations are A B and C.

Let me now assume a mechanism, so the assumed mechanism is the beam mechanism. So, 1
have one rotation here another rotation here and another rotation here by symmetry you will
see this is 2 0, is it not? So, I need 3 hinges let us assume the hinges here, here and here

which are marked in this figure also.

So now, let us see what is the external virtual work? External virtual work is load into
displacement let us call this as A. What is the internal virtual work? Internal virtual work will
be the work done by the plastic hinges and its rotation which will be Mp into 6 which is at A
plus Mp into 2 6 which is at C plus Mp into 0 is at B which gives me 4 Mp 0.

So, let us equate external virtual work to internal virtual work. So, there are two unknowns
here A and 0, but in the figure they are connected. One can say very well if the span is 1, you

can say for small rotations tan 6 which is 6 which is actually A by 1 by 2 which is 2 Del by 1.

So, substituting back here W into ¢ will be 4 Mp into 2 d by L. So, 6 goes away I get Wc as 8
Mp by I which is same as this. So, friends both the theorems will ultimately converge to give
you the same answer if the problem is simple. So, either methods or both procedures give you

the same answer in this example. Now let us take another problem.
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Let us say a fixed beam is loaded with uniform distributed load of intensity W per unit length,
obtain the collapse load. So, let us do that. Let us say I have a fixed beam subjected uniform
distributed load over a span of 1 E I let us mark this as A and B. There is a critical section at
the center which will be see because we all know for a beam under uniform distributed load

the maximum moment can also occur at the mid span of the beam.

So, what we should do in static theorem, we must first draw the static admissible bending
moment diagram, the static method and this is a kinematic method. Let us draw that, so [ am
drawing statically admissible bending moment diagram. So, let me draw the fixed end

moment diagram separately we all know this intensity is WI1*/12 .

Then let me superimpose the bending moment diagram of this which will be equal to W1%/8.
So, now, the net bending moment diagram is what I have here right out of which this is

positive this is negative. So, this neutral line has shifted to this line.

So, now we have drawn a statically admissible bending moment diagram, let me then do for
the statically admissible bending moment diagram. Let us first ask a question how many Mp
is required for this beam? it is a fixed beam, it has got static degree of indeterminacy as 2. So,

we need three hinges to make it as a mechanism.

So, let us assume these hinges are at A, B and mid span which is C. So now, I have a hinge
here, I have a hinge here, I have hinge. Now I say there is a hinge here, there is a hinge here

also, is it not? So, I should say, 2 Mp= WI*/8. So, which will give me W¢ = 16 Mp/I?>, which



is my collapse load. Let us try to do this problem using kinematic theorem a fixed beam,

under uniform distributed load for a span of land E T .

Let me try to draw the mechanism. Let us say the hinges are allowed to form at 3 locations
one at the mid span and therefore, this becomes my assumed mechanism. So, one hinge here,

one hinge here and one hinge here. Now let us take this deflection as o let us say this rotation

1s 0.

Now let us see what the external virtual work is. So, the external virtual work is done by the
load on this area. So, it is nothing, but if it is udl it is half into base into height into W which
will be W16/2. Internal virtual work will be equal to Mp8 which will be at A, plus Mp into 2 0
which will be at C which is the mid span of the member plus Mp 6 that B which becomes 4
Mpb/1.

So, by principle of virtual work I must equate external to internal virtual work. So, W15/2
should be 4 Mpb/1. So, from the figure we know that tan 6 is 6 = 6/(1/2). So, 6 becomes 20/1
let us substitute that. So, W*1*8/2 is 4Mp(238/1), so 8 goes away. So, that becomes 16Mp/I*

which is W¢, which is same as this.

So, I get the same collapse load by both the methods. if the problem is simple where I can
draw the statically admissible bending moment diagram easily, I can assume a perfect
collapse mechanism easily and I can get the same answer by both the methods. And you will
also notice that there was no iteration involved. You may be wondering when will the
iteration come, when you have got more than one collapse load obtained from the analysis,

then the iteration will start.
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Let us do another interesting problem, where I have a simply supported beam subjected to
eccentric load. So, let us say I have a simply supported beam one end hinged, other on roller,
I have a load which is eccentric. So, this is A and this distance is B, of course, the span of the
member is | and the member has got EI property. Let me draw the statically admissible
bending moment diagram, let us first ask what is the degree of indeterminacy for this beam it

1s 0.

So, how many plastic hinges I need? I need only 1 plastic hinge, where it can form? It can
form only at C. It cannot form at A and B, because A and B are already hinged connections.

So, let us draw the bending moment diagram.

So, the hinge can form only at one point, that is here and we all know that value will be
Wab/l, So, this is the point where the hinge is formed therefore, I can say Mp = Wab/l
therefore, Wc is a collapsed load will be Mp*l/ab which will be Mp(a+b)/ab. So, that is

collapse load, no iteration, and straight forward solution.

Let us do this using kinematic theorem. Let us draw the admissible collapse mechanism here
is going to be beam mechanism. So, hinges can form only at one location that is here. Now

you may wonder how | am drawing the hinges very interesting friends.

If I draw a circle which is unfilled, this is a structural hinge. If we form a circle with filled

this is called plastic hinge. So, these two are structural hinges where the moment is equal to 0,



this is a plastic hinge where the moment is equal to Mp. So, now since it is unsymmetric the

load this will be 6, and this angle will be 0,.

And this rotation will be 6, + 0, by simple geometry. Now we also know that 6, let us call this
value as 9, so d/a. So, that is 6 =a*01. 02 is &/b which means 9 is also equal to 62*b. So, let us
say the external virtual work done for this problem is W*9, the internal virtual work for this
problem is Mp (61+602), which will be equal to Mp*/a plus 6/b where we say it is Mp 6
(atb)/ab.

So, we should equate this W6 = Mp 6 (a+b)/ab, so 6 goes away. So, Wc is Mp(a+b)/ab which
is same as we have here. So, we are able to estimate quickly the collapse loads using both the
theorems without iteration, because in both the assumed mechanisms or the bending moment
diagram the critical sections are easily identifiable and we are able to mark the location of

plastic hinges conveniently without any ambiguity.

The confusion will come only when it is either a partial collapse mechanism or over collapse

mechanism.
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Let us quickly find out another example, where a simply supported beam with central
concentrated load. So, I have a simply supported beam with a central concentrated load W

over a span of 1 comma E 1. So, we know the number of plastic hinges required for this



problem is 1 because the degree of indeterminacy is 0 and that will be forming the hinge at

this point.

Let us draw the statically admissible bending moment diagram which will be this and this
value is WI/4. So, let us quickly find out what will be Mp? Mp will be W1/4 therefore, Wc=4
Mp/l. Let us do the same problem using kinematic theorem, let us draw a mechanism. We
know that the hinge will form here and here at these two locations, there will be structural

hinges or let us draw it with the other way let us do it with the other way.
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Here there will be structural hinges and here there will be plastic hinge. So, this is 0 thisis 2 6
this is 0 I call this as 6 and the load is W. So, the external virtual work will be W into o the
internal virtual work will be Mp into 2 6 which is at C, so this is A B and C. We also know 0
is 8/(1/2), so 8 is 2 &/1. So, equating external virtual work to internal virtual work W$ is
Mp(20) which will be Mp* 26/1, so 6 goes away. So, that is 4Mp/l which is exactly same as
this, so that is Wc.

So, these are simple problems where we are able to find out the collapse load straight away
without any iterations. Now let us quickly compare with this understanding the plastic and

elastic analysis.
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Let us say what are the advantages and disadvantages of plastic analysis.

1. The plastic analysis enables effective utilization of the entire cross section of the
member by completely plasticizing the section.

2. Plastic analysis increases the load capacity of the system.

3. Material strength is well utilized.

4. Factor of safety is enhanced by the shape factor.

What are the demerits of plastic analysis? The disadvantages could be the member will be
subjected to excessive deformation. In fact, it is subjected to plastic deformation. since this
method demands redistribution of moments between the critical sections, This method is

useful only to statically indeterminate structures.

Of course it is applicable to form dominant design structures as well. The system undergoes

excessive deformation.



(Refer Slide Time: 29:25)

Covfarimn G Qlade L efodi Arelss

) Mechanidgm iy
E(_wc A“JY‘ ) = wwlt;\p)« load & ~eaclisal whay
D Eg Lok e A under oy @ Moo & fomad,
load ¢ pubinaFon gheuld vtmasls
) sk [Z4N 39 &ﬂﬂwkx
The AN hald moc i €1 5
9 Coupilily cadehs A oA, e ot el
ebawshe ) diffese $heat. Wecksaiy
O fin Y-dtche Aeld b 9@1951\1 ot ol
el Wit eack, ol T any e & Ou LML I
Lok At by Mad' & 2k
F b SO 6

Let us quickly compare the plastic and elastic analysis. Let us say an elastic analysis what do
we do is, we first satisfy something called equilibrium condition. It states that the structure

under any load combination should remain in static equilibrium.

The second is compatibility condition, which states that deformation of different fibers in a
given cross section should be compatible with each other to deform freely. The third
condition is called limit stress condition, this condition states that the maximum stress in the
extreme fiber should not cross yield stress. Relatively what are the equivalent conditions in

plastic analysis, the first condition equivalent to this is mechanism condition.

According to this condition ultimate load or collapse load is reached the mechanism is
formed. Two, equilibrium condition this states that the structure should remain in equilibrium
with the applied loads even after the formation of mechanism. Third condition is the plastic
moment condition. According to this condition in any fiber at any cross section the developed
stress, should not exceed sigma y and the moment cannot exceed Mp. So, quick comparison

between these two method of analysis.

Having said this let us now look at examples where some tricky iteration is also involved.



(Refer Slide Time: 33:32)

Apeush sy
) fd T v callg load ) @ poigped Canblineg Lyl udl
6)  shh de
A TPNTINY
AL Ax
O Gt i’\/
LMM—@F a2 /

<
cie =1 . Boakm
Np-®@ (ﬁ/c) B#a ;:W

T bhoh tasede ¢

P g

Let us do special examples, where obtaining the collapse load is not that easy slightly tricky
we will take an example 1. Let us say find the true collapse load of a proper cantilever
subjected to or under uniform distributed load . Let us take the example where static theorem
is applied we will do a static theorem now. So, let us take a cantilever which is propped at
one end subjected to uniform distributed load W per unit length. Let us say the span of the
beam is | and has got EI properties.

Let us call this section as A and this is B. Now we really do not know where will be the
maximum moment happening in the span A B. Let us call that section CC and we want to
find this. So, it is that section where the moment is going to become maximum. Obviously, |
think it is very clear for all of us that CC cannot be at the mid span because one end is
propped either end is fixed. So, there will be an uneven distribution of the critical section it

cannot happen at the mid span.

So, by the way let us see what is the degree of indeterminacy of this problem, neglecting
axial deformation. So, let us say there are two reactions at A and there is one reaction at B is
it not. So now, the total is 3 equations of static equilibrium is 2, so I need the number of
plastic hinges to be 2. They can form at A and they can form at C. They cannot form at B ,

because B is already a hinge where the moment is 0.

So, now it is very important to locate the section C, is it not? Then only we can. So now, the

problem is I cannot draw quickly a statically admissible bending moment diagram and locate



the hinge because I do not know the distance at which this is going to form let me call that as

X.

(Refer Slide Time: 36:46)

So, let me draw the bending moment diagram. So, we know this is going to be Mp this is
going to be Mp. So, one hinge will anyway form here. So, let us say the other diagram is
here. So, the section is going to be cc which is a distance x from here and there also the net

diagram is going to be Mp, so this is the bending moment diagram.

But the difficulty is what is ¢ or what is x, we do not know this is it not? So, the first job is to
find out that. So, let us say bending moment at ¢ or a section cc. So, this is Mp let us call this
as small y this is I, so use similar triangle. This is | and this is Mp and this is y. So, [ want this
and of course, this is X. So, for | it is Mp for x it is y. So, y will be actually equal to Mp into x

by L

So, the bending moment at a critical section Mcc will be equal to Mp+y which is
Mp+Mp(x/1) which is Mp(1+x/l) which is Mp(l+x)/l. That is my bending moment at cc. Let

us also find out this bending moment from the first principles.
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We know Mcc is also equal to WIx/2 — Wx?/2. So, this reaction is W1 by 2 and this x . So, W1
by 2 I am taking anti clock as positive. So, which will become Wx(l-x)/2. So now, this

equation 2 we call this as equation 1, let us equate 1 and 2. So, we can easily do that.

So, Mp(I+x)/1 should be equal to Wx(I-x)/2. So, I can straight away say Mp is Wxl
(1-x)/2(1+x). Can we say this? Equation 3. Now for this bending moment to be maximum the
first derivative of this with respect to the variable should be 0. Because I want the bending

moment to be maximum here. So, differentiate this, set that to 0 and find x.

(Refer Slide Time: 42:15)

By ANG 8 pe
[ = ok
WM G 6{%
Vpe @ b (£5) - oo at’
We.  H-geMe

/Q'\_.
o (WL st



You will find x as 0.414 1. Once I know x let me find Mp. So, substitute in equation 3 we get
Mp as which is WxI (1-x)/2(I+x) which will become 0.086 WI*. So therefore, w, is now going
to be 11.66 Mp/I* or w.* 1 will be 11.66 Mp/I, where this I can say as Wc= 11.66 Mp/I.

So, friends you can see the procedure of finding out collapse load if the system is
complicated and you cannot draw the statically admissible bending moment directly to locate
the plastic hinges then the solution is tricky. So, you know in this case Wc is given by 11.66
Mp/l. And we all know very quickly that Mp= o, * Zp. o, for the material is known, Zp for a

cross section is known, because Zy* shape factor is known.

So, the right hand side equation is known. therefore, Wc can be computed, so collapse load is
estimated . So, look at this example very quickly that how we used the static theorem in a
roundabout manner to estimate the collapse load. In the earlier examples they were straight
away because no such complication was there. I could easily draw the statically admissible
bending moment diagram and mark the required number of plastic hinges, readily at those

cross sections and get the collapse load directly.

But in this case I could locate the section, but I do not know where it will happen. So, I found

out that and I could locate this.
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Let us try to solve the same problem using kinematic theorem.



Let us see is it easy for us to use kinematic theorem in this case. So, kinematic theorem says
for a propped cantilever under uniform distributed load over a span of 1 E I. I have to draw
the mechanism, we know the degree of static indeterminacy in this case let us say this is A

this is B and this is C.

So, we know there are two unknowns at A plus, 1 unknown at B, we are neglecting the axial
deformation, this will be minus number of equations. So, equation of equilibrium will be 2.
So, number of plastic hinges required will be 2 because the degree of indeterminacy is which

1s3-2=1.

So, any two plastic hinges where will they form? They will form at the fixed support they
will form at C but C location earlier was not known using the static theorem, now I know
this. So, I get hinges here and here. Now, I can draw the deflected profile and draw the
hinges, say this is 01 this is 62 this is 01 +02.

So, from the figure we know tan 0, is 0, for small deformation is 6/0.586. Then 62 is 6/0.414
1. So, let us say the external virtual work is half into base into height into Wc, the internal

virtual work is Mp into 6, at a plus Mp into 81 plus 62 at ¢, which will now Mp61 plus Mp62.
Let us substitute for 61, 62 from here.
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internal virtual work will be 2 Mp( 6/0.5861) plus Mp times of 02 which is 6/0.414 1, which

becomes 5.828 Mp/l of & . So, we equating external virtual work to internal virtual work we



get We *(1 8)/2 is 5.828 Mp &/1, so & goes away. So, it will become 11.66 Mp/I* or this is
small Wc. Wc * 11is 11.66 Mp / 1 which is capital Wc.

So, friends you will see that this value is same as we obtained here, but there is a very
interesting conclusion in this problem we have used static theorem solution to check the
kinematic theorem solution, How can you say this see here I have borrowed this data from

the static theorem.

So, please friends note that all the time these two theorems are not independently applied
some of the problems they are dependent they will be helping each other. So, please
understand that it is important that I must know both the theorems, how to employ solution of
finding both the theorems then only I will be able to successfully find out the collapse code
there is a very standing example we have here. Let us do quickly a design problem and see

how this can be helpful.
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Let us say a fixed beam with eccentric load of magnitude 30 kilo newton over a span of 5
meters is to be analyzed for collapse load. So, the beam is here fixed beam there is a load
which is W which is 30 kilo newton and the load is 2 meter from the end. So, this is 2 meter

from the left end and this is 5 meters.



So, now the degree of static indeterminacy is let us say this is A this is B this is C. So, there
are 2 unknowns at A and there are 2 unknowns at B neglecting axial deformation minus

equations of equilibrium. Equations of equilibrium will be 2 that is sigma f y, and oy,.

So, therefore, degree of indeterminacy is 4 minus 2= 2. So, the number of plastic hinges
required is 3 where will they form they will form at A, they will form at B, they will form at
C; it is a straight forward solution. Let us draw the deflected profile hinge here hinge here and

hinge here 01, 62, 01 + 62.
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So, I could say now the external virtual work is W * 9, internal virtual work is (Mp * 01) , +
Mp * (61+ 02) - + (Mp * 82) . So, from the figure 01, is 6/a which is 6/2 meters and 02 is &/b

which is 8/3 meters.

So, external virtual work is W * & which is equal to internal virtual work which is Mp times
of 20, +26,, is it not? So, 2 Mp*6/2 plus &/3 is W * 6. So, & goes away. So, I can find the true
collapse load as 2 Mp* (1/2 plus 1/3) .

For a given cross section if I know the shape factor if you know Z y I can find Mp. So, I can
find the collapse load. So, plastic analysis is very simple using these theorems if they are not

iterative.
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So, let us write down the summary what we learned from this lecture. This lecture helped us
to learn example problems to determine the collapse load we have used both static theorem
and kinematic theorem to estimate Wc. We have also seen examples where 1 theorem

supports the other in estimating Wc.

So plastic analysis is simple, easy and here the load is function of Mp where Mp is a function
of material and shape factor it is a geometric property of course, material is also involved that
is interesting. And I am sure you will find more examples in my book and other literature
papers and you will be able to enhance, your interest towards estimating plastic analysis or
doing plastic analysis on collapse load estimates for varieties of problems which we will be
doing furthermore in the coming lectures, but however, I wish that you should do more
examples by taking these case studies or looking at examples illustrated in my textbook and

my reference notes.

Thank you very much and have a good day friends. Bye.



