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Module - 01

Lecture — 16
Planar non-orthogonal frame using computer code
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* Planar non Orthogonal Structure
* Solved Example 2
* Computer Code
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Start with the program. So, number of members are 3 number of members are 3 let us

input the I value.
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The I value you know 2.28; 3.125 and 2.28 in meter to the power 4 let us do that 2.28
3.125; 2.28, let us input the length, let us input the area, let us get theta unrestrained
degrees are 6 in number you can see that unrestrained degrees are 6 in number, they are

green in number and remaining 6 are restrained degrees.

So, 6 in number and 6 in number the global labels of L 1, L 2, L 3, you can see here 7, 1,
9,4,8,3;7,1,9, 4, 8 3 and so on, then I can find the transformation matrix; you can

find the rotational stiffhess.
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Find the member matrix, then find the transformation matrix and get the transpose; let us

get these values; I am directly getting it here, [ am entering it here.

(Refer Slide Time: 01:42)

ikl View Insenl Actions. Tooks Help Mod-1 Lec-16- Planar, Non-Orthogonal Using Computer Code (Part - 2)
4 /-¢-S4” B/ AAAREARNCNEN \J
3
a | = 9
- 1 § 0
- °
kae vexe |y -3 o o
tprintf (‘Transtormation matrix of member, (T] = \n'): q ﬂ ‘} d? e &
disp (1)
:,‘:-u nsformation mabrix Transpose, [11 = \n'T7 L ) T (R - IR
disp (7t2): 5
Ky = TErKT =
tprintt ('Global Matrix, (K global] = \n'): 0 328
diep (k)
for p = 116 » b =33 hilg
for q = 136 ok 0
Knew((L(4,p)), (1(4,9))) Kg(p,g):
end
end
Klolal = Kiotal + Knew; 21 o <
itie1 ~¢ | s 5w
= 1 &
Kqr=kgr kgj = E xR lo 2| (= =5 55
fenbarl= TL1**fenl;
#logil 1 ==2
P VT L T ;
!;gll- };q: 12! fem2; )
ombar2= TL2'*fem?; - 3 ®
slse o3 T8
TIe Ty
Kg3eKg: 0 0 ol -°
s fenbar3= 713" fend; C 2 <
i end =P e
) U< WP T
NPTEL
v
R ¢
v

So, I am trying to get each member here. So, I am writing it here. So, we get K AB as E
into 10 power minus 4, 23, 11, 9 minus 9, 0, 0, 11, 23, 9 minus 9, 0, 0, 9, 9, 4 minus 4, 0,
0 minus 9 minus 9 minus 4, 4, 0, 0, 338 minus 338, 338, 338.



Similarly, I can find K B C which is E 10 to the power minus 4, 21, 10, 5 minus 5, 0, 0,
10, 21, 5 minus 5, 0, 0, 5, 5, 2 minus 2, 0, 0 minus 5 minus 5, 2, 0, 0, 250. Similarly, one
can find K C D also; there is no big deal about it, you assemble this and get K u u bar.
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So, get the total stiffness matrix complete get the total stiffness matrix.

Then plug out the unrestrained matrix alone. So, we get K u u, but in the global degree
which will be E into 10 power minus 4, 44, 10, 9, 5, 0, 0 minus 5, 10, 41, 0, 5, 6 minus 2,
9,0, 250, 4, 0 minus 250, 0. So, 5, 5, 0, 339, 0, minus 2 minus 250, 0, 3, 1, 3, minus 120.

So, minus 5, minus 2, 0, minus 2, minus 120, 2, 44 K u bar.

We directly get this from this statement then we inverted we get K u u inverse, then we
get the joint load vector; we can see at the joint load vector if you look at the figure the
joint loads are applied for this problem, I shown the figure here, I get; I have one load of
50 kilo Newton and other one of 100 kilo Newton applied along the degree of freedom 3
and 6.

So, joint load along 3 and 6 along 3 it is positive along 6 negative from this, you plug out
the joint load unrestrained degree then get delta u. So, the delta u obtained in the global
degree is actually 1 by E of minus 986.0 minus 75.8, 2882.9 minus 2.50, 8§98.50 minus
3682.2 at degrees of freedom level 1, 2, 3, 4, 5 and 6.
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end
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/mh.u 1= (Kgl * delbarl)+fembarl;
tprintt ‘('Mimnex Nunber =').; 50 p_s\}.
fprintf ('Global displacement matrix [DeltaBar] = \n'):
disp (delbarl);
tprintt (‘Global End monent matrix (MDar) = \n'):
disp (abarl);

elseif i == 2
detbar2 = det7
mbar2+ (K2 ' delbar2)tembar:
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disp (delbar);
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disp (wbar2);
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LPHNKE ('Global disp
disp (delbard);
tprintt ('Global End moment matrix (Mar) = \n'):
disp (nbard);
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Once we get this, then we try to find the del bar and M A bar of every member for every
member. So, we now find M bar A B which willbe M 7, M 1, V9, V4, H 8, H 3 which
actually is equal to 1.3408. There is a multiplier of E outside 2.167, 0.0858 minus 0.0858
minus 0.3894; 0.3894.
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Local Stiffness matrix of memoer, (K] =
0,002 0.0011 0,009 -0.0009 0 0
M 00011 0.0023 0,009 -0.0009 0 0
0.0009 00009 0.0004 -0.0004 0 0
0.0009  -0.0009  -0.0004  0.0004 0 0
o o 0 00,0930 =0:0390
0 0 0 0 -0.033% 0033
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IS o 0 0.000<0.000 o o
k 0 0003  0.03% 0 0
h -0.0009  =0.0009 0 0 0.0008 =0.0004
33% 0.0009 0,009 0 0 -0.0000  0.0004
RO
NPTEL
v
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Similarly, I get this is my local stiffness matrix of A B, this is my global matrix of A B,
this is my local stiffness matrix of B C, this is my global stiffness matrix of B C.
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Local Stiffness matrix of member, (K) =
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!QL 0.0010  0.0021 00005 -0.0005 [ 0
00005 0.0005  0.0002  -0.0002 0 0
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0 0 0 0 0,020 0.0250
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00021 0.0010 0,005 =0.0005 0 0
- 0001000021 0.0005—<0.0005 0 0
00005 0.0005  0.0002  =0.0002 0 0
00005 -0,0005 0,002 0,0002 0 0
fie 0 0 0 0 0.0250 =0.0250
(] 0 [] 0 -0.020 00250
®
NPTEL
v
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Menber Mumber = 3
Local Stiftness matrix of nember, (K] =
00020 0.0010  0.0007 -0.0007 0 0
0.0000  0.0020 0,007 -0.0007 0 0
0.0007  0.0007 0,003 -0.0003 0 0
00000 -0.0007 0,003 0,003 0 0
0 0 0 0 0.0002  -0.0302
0 0 ] 0 -0.0302  0.0302
Transtormation matrix of memer, (1) =
1.0000 0 0 0 0 0
U L0000 [ [ 0 [
0 0 0.4472 0 0.094 0
0 0 0012 0038944
0 0 -0.0944 0 0.44m 0
0 [ O 0. (R
Transtormation matrix Transpase, (1) =
1.0000 0 0 0 0 0
0 10000 [] [] 0 0
0 0.4472 0 -0.0944 0
0 0 0 0.2 0 0.8910
0 0 0.0 0 0.44m 0
] 0 0 0.9 0 o.mn
Global Matrix, (K global) =
0,0020-——0,0010—0,0003—=0,0003— 0,006 =0,0006
0.0010  0.0020  0.0003 -0.0003  0.0006 -0.0006
ﬂ < @] 0.0000 00003 0.0242 =0.0242 =0.0120 _0.0120
0.0003  -0.0003 00242 0.0242  0.0120 -0.0120
|| 0.0006  0.0006 -0.0120  0.0120 0,006 -0.006)
0.0006 -0.0006 00120 -0.0120 -0.0063  0.0063
®
NPTEL
v
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This is my local stiffness matrix of C D, this is my global stiffness matrix of C D where

all have an multiplier of E outside.
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] o 0000

0,0069  <0.1617  -0.0037  -0.1551  -0.0710
0.2710  -0.1267  -0.0030 -0.1305  -0.0626
01267 1,3763 0,007  1.3%43  0.6593

-0.0030  0.0070  0.029  0.0070  0.0039
00305 13843 0.0078 13721 0.6681

0,062 0.6593  0,0039  0.6601 0,365

o 0.0
0 (!

0.0 0

e 1
0.0080  =0.0140

Unrestrained Stitfness sub'matrix, (Kuu) =
0.0044 0 0

Unrestrained displacsments,
0.0010  0.0009  0.0005 '

0 [belu)
00010 0.0041 O 00005 0.0006

108003 ¢
0.0009 0 0,028 0 -0.0250
E | 00005 0.000% 00,0339 0 0.9860
0 0.0006  -0.0250 0 0.031) - 0.0750
0.0005  -0.0002 0 -0.0002  -0.0120 2.8829
=0.0075
0,898
Fo 3.6022

NPTEL
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Then we are able to get the full stiffness matrix the column 11 and 12 are here, then K u
u, E is common out here inverse of K u u. So, we have 1 by E, here this is my joint load
vector this is my partition. So, this is my J L u and this is my J L r, then I get unrestrained

degree of freedom which is del bar of the whole system.
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Where one by E is a multiplier once I get this, I get M bar AB, I get M bar B C and I will
get M bar C D. So, let us see the labels of AB, B C and C D. So, the labels of AB, B C
and CD could be 7, 1, 9, 4, 8, 3 similarly for B Citis 1, 2, 4, 6, 3, 5; for this, it is going



to be 2, 10, 6, 12, 5, 11; let us try to plot these results maybe here itself, there are 3
elements; let us mark those elements first element second element third element let us

enter the values.

You know this is going to be 1.34 plus. So, 1.3408 there is an E multiplier, we cannot
entering in that value here, then plus 0.2167, then along y is my reference axes is going
to be the third value which is 0.0858; the forth value is negative 0.0858, the fifth value is
negative. So, opposite 0.3894 and this is 0.3894; let us do it for the next member 1 and 2.
So, this going to be minus of clockwise 0.2167, 2 is anticlockwise 0.7314; this is upward
0.0858, this is downward 0.0858 and this is 49.6106 and this is 49.6106; let us do it for

the third member.

This is minus. So, 0.7314 and minus again. So, clockwise which is 0.6541, then minus
minus 99.9142 and this is plus 99.9142 and this is positive 49.6106; this is negative
49.6106. So, friends please check the compatibility the moments are compatible; the
reactions are compatible the moments are compatible the reactions are compatible we
know there is the net force of 50 applied here which is actually equal to this plus this is it

not.

Which is opposed by this 450, similarly there is a net downward force of 100 applied
here which is actually equal to this plus this system is in equilibrium now and we are

solve the problem.

So, friends, we have explained you how to solve a planar non-orthogonal structure using
computer code which has been slightly modified to accommodate the input as per the
problem. So, we have solve 2 examples of non-orthogonal planar structure with 2
member and 3 member, we can solve n number of problems by using this code by
making appropriate modification adding the fixed end moments for the member loading
and do the procedure I hope you have understood and you will practice this coding and

solve such similar examples for your tutorials.

Thank you very much.



