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Friends, let us continue with the lecture 12, where we are going to talk about the Failure 

Domains in system reliability. 
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This is lecture in module 2 on system reliability or reliability theory, on the online course 

risk and reliability of offshore structures. We already said for a series system and a 

parallel system. 1 can easy estimate the failure domains. So, let us revise for a parallel 

system which consists of n component. n components the system fails if all its 

component fail. Therefore, the failure domain is given by as we saw in the last lecture, 

for a parallel system is actually intersection of the component failure domains i equals 1 

to n, n is the number of components, g i x less than or equal to 0 that is a equation. 

Now, let us try to understand the failure domains of series system and parallel system 

graphically. So, we know that series system failure functions, we know the failure 

domain of the parallel system. Let us try to understand this graphically 1 is of course, 



intersection of the failure domains of different sub components other is the union. 

Because you know the failure condition for series systems is, if any fails the system fails 

where as for the parallel system see if all of them fail the system fails. Therefore, 

accordingly we have formulated the failure domain we are given the governing equation, 

for g f x as we saw in this lecture and as we understood in the last lecture. 

Now, let us try to understand how the limit state function, looks like for a failure domain 

of series system and that of a parallel system consisting of let us say 3 components let us 

say n the number of components is 3. So, in the figure the hatching along the limit 

surface will be done. So, that it indicates the region in which the corresponding limit 

state function is lesser than 0. So, kindly pay attention to the figure shown in the screen 

now. 
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The figure shows the failure domains for a series system consisting of 3 components 1 

can see here g 1 of x is equal to 0. Which indicated by this line the failure domain is this, 

this area which is the failure domain. 

Similarly, g 3 of x is this line the failure domain is indicated here, and g 2 of x is this red 

line the failure domain is indicated here we know for a series system consists of 3 

components it is union of all of them. So, the hatched portion actually shows the failure 

domain of a series system with 3 components; x 1, x 2 and x 3 or g 1 of x, g 2 of x, g 3 of 



x being the limit state functions of 3 independent components. Similarly pay attention to 

the figure shown in the screen now. 
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This figure shows the failure domain for parallel system consisting of 3 components and 

see here g 1 of x is the limit state function for the first component. g 2 of x is the limit 

state function for the second component. The hatched portion shows the failure domain. 

g 3 of x is the failure domain for the third component the hatched portion shows the 

failure domain. Just now as we saw from the equation 1 in the blackboard here the failure 

domain is an intersection of these failure components. So, the hatched portion becomes 

the intersection of this failure domain, this failure domain and this failure domain. So, 

this becomes an intersection of all the 3. 
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Therefore for a general system failure domain can be given by cut set formulation that is 

a failure domain can be written in 2 ways, can be written in 2 ways. Let us use the cut set 

formulation. For the cut set formulation the failure domain is given by u of m, 

intersection of i element of c m and failure function is a g i of x less than or equal to 0. 

Where c m is mth cut set. Now the safe domain for the general system with cut set of 

representation is define by the path set formulation. So, that is going to be the safe 

domain which is going to be over i intersection of i element of p i with g of x greater 

than 0, because I am talking about the safe domain equation number. 

Where p i is the ith path set. Now let us try to understand this dialogue or argument with 

minimum cut sets. So, for a general system failure domain is given by the union of 

minimum cut sets. 
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What are the cut sets in this case for our example 1 is, c 4 which is 2, 3, 4 other is c 5, 

Which is 1 and 4, these are the minimum cut sets. We have the failure domain was 

shaded in the figure as we you saw in this screen for some assume component, limit state 

surfaces. 

Therefore, the problem of system reliability now can be stated. Now your failure can be 

given by g f of x, which you call as equation number 4. One can always say alternatively 

probability of failure you can also be given as r 1 minus probability of failure can be 

given as integration of bar g f of x. So, pay attention to the figure shown in the screen 

now. 
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We are now marking the failure domain for the general system, which includes the 

minimum cut sets c 4 and c 5. So, one can see here the shaded region, which includes c 4 

the failure domains and g 1 of x, g 2 of x or g 3 of x and g 4 of x and g 2 of x or the limit 

state functions assume for events 1, 2, 3 and 4. So, the shaded region shows the failure 

domain we can see here; g 1 of x is got failure domain the surface, g 2 of x has got a 

failure domain in this way; g 3 of x has got a failure domain this way and g 4 of x has got 

a failure domain this way. So, the intersection i mean the union of this is going to give 

me the failure domain of the general system. 

Having said this lets us explain the discussion for first order estimates of this way. 
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Now, in order to compute the system reliability, one must be able to compute the 

probability of the union of events beat system series is a series systems of sub systems. 

So, if you really want to find the probability of failure, or to compute the system 

reliability. One needs to estimate the probability of union of series systems or sub 

systems or probability of intersection of parallel systems or sub systems. Now for a 

series system, probability of failure is given by probability of union i equals 1 to n g i of 

x less than or equal to 0, call equation number 6, after applying to the approximate 

transformation u t of x, after applying the approximate, let us say appropriate and after 

applying the appropriate transformation, u as u of x to the standard normal space. 

One can find the probability of failure approximately as probability of union of i equals n 

g of i of u less than or equal to 0. When there is an approximation due to mapping of non 

normal variable occurs. When there is an approximation of mapping of non normal 

variables to the standard normal variable space occurs then, one has to linearlize g of u 

equals 0, at the design point for the ith limit state function. 
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Now, this can be done using Taylor Series Expansion. So, in that case g i of u will be 

approximately equal to g transpose u i star u i u minus u i star, which is further equal to g 

i of u i star minus alpha i transpose u i or u minus u i star, which can be further written 

as; g i u i star beta i minus alpha i transpose u. It say set of equation as where u i and beta 

i are the design points and reliability index of the ith component of time from first order 

reliability methods applying to the component. 

The corresponding unit travel vector to limit surfaces. 
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Your surfaces is actually g i of u set to 0 at u i. Now, in that case the probability of 

failure will be approximately equal to probability of intersection, union i equal 1 to n 

beta i or beta i minus alpha transpose u. Which is less than or equal to 0 equation number 

9. Now dividing both sides of the inequality whether positive scalar, let say my dividing 

with positive scalar which is g i u i star. One can define as z i minus alpha i transpose 

which is approximately n of 0, one which is a standard normal variable which 0 mean 

process in that case probability of failure is given by probability of u i equals 1 to n z i 

less than equal to beta i. 
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So, with the help of rotational symmetry of the standard normal space which is actually 

used, when you are transforming the non normal variable to the normal variable, one can 

use the de Morgan's law. So, in that case to get probability of fail in that case probability 

of failure is given by probability of z i less than, beta i which is equal to 1 minus p of 

section of i equals 1 to n z i greater than minus beta. Which is further equal to 1 minus p 

of intersection of i equals 1 to n z i less than or equal to minus beta, which I call as 

equation number 12, which can now result to easily because i have a very interesting 

argument of normal variability here which can be simply 1 minus beta and r z. 
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Where phi n of beta r z is actually the joint normal cumulative distribution function joint 

normal cumulative density function, CDR with the correlation matrix r z which is 

evaluated at beta which is given by different indices beta 1, beta 2, beta n transpose in 

the present case the correlation matrix is identical to co variance matrix. Because of the 

normal variables in the present case the correlation matrix is identical to the co variance 

matrix because variables are standard normal. Therefore, the correlation matrix is given 

by r z z is nothing, but which is a u, u a transpose nothing, but a a transpose equation 13 

the off diagonal terms in this case the ith row of a is actually alpha i transpose and 

actually unity this is due to the definition of the variables. 

The off diagonal terms of r z z are given by z I, z j is alpha i transpose alpha j equation 

number 14 which quantifies the correlation between the failure modes i n j. 
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So, equation 14 quantifies the correlation between the failure modes i n j, now also 

friends please understand the unlike the reliability analysis component level. So, in 

component level reliability analysis the unit normal vector is of secondary importance 

due to the rotation symmetry of the normal space in system analysis you will see there 

the relative directions of the unit normal places rule which are given by alpha i and alpha 

j, play a significant role that is a difference actually between the component level and 

reliability level in analysis. 

So, for a parallel system the probability of failure is given by probability of section of i p 

equals 1 to n g i x less than equal to 0 - equation number 15. 
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Now, this can be approximated as follows. So, I say probability of failure is probability 

of intersection of i equals 1 to n, which is g i of x less than or equal to 0. We just 

approximately equal to probability of intersection of i equal to 1 to n of another set of 

variable which is u less than 0. Which then can be approximated as probability of 

intersection of i equals 1 to n, which tells me the reliability index beta i minus alpha i t 

into u variable less than or equal to 0. Which can then approximated as probability of 

intersection of i equals 1 to n, which is z i less than or equal to minus beta i because i am 

transforming this into an equivalent normal variable space equation number 16, which 

will amount to phi of n of minus beta r z.  

So, we already defined beta and r z z in the previous explanation already said beta and r z 

z z correlation matrix. So, the same definition applies here so, since we are transform the 

variables from x to a normal space u i can apply this algorithm and get my probability of 

failure is nothing, but the phi function of the 2 variables beta and r z z. 

Therefore friends from these 2 lectures, one can easily understand behaviour of a general 

system can be model either as a parallel system composed of path sets with each path set 

acting like a sub system of components in series or vice-versa first order approximation 

for general systems reliability is based on the cut set formulation, which is now discussed 

a similar approach can also be developed using a path set formulation, which i live it to 

you for the self study in order to estimate the probability of failure system using the cut 



set formulation 1 need to evaluate the probability of failure of each system. So, let us talk 

about that. 

So, we are trying to estimate the probability of failure general system using cut set 

formulation. So, 1 need to know the probability of failure of the system which is given 

by probability of u m section i the element of c m of g i x less than 0 equation 17. 
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Now, let the event be e m which is intersection of i element of c m which is then 

extended on the failure domain g of x less than 0. Now e m is actually the event that the 

parallel sub system which is represented by the cut set when c m fails. 

Therefore probability of failure can be now rewritten as probability of u m e equation 

number 18. So, as per the inclusion exclusion of set theory 1 can derive the following 

statements. 
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Further probability of failure can be then written as probability of u m e. One which can 

be further read as probability of e 1 union, e 2 union keep on going as e n e which then 

can written as i equals 1 to n e of probability of e i minus summation of j equals 1 to n e 

summation of i equals 1 to j minus 1 of probability of e i e j. 

In this argument n c stands for the minimum cut sets identified from the general system. 

Now the above equation can be solved with summing the probability of failure of each 

cut set. Let say summation of i equals 1 to n e probability of e i along with the 

probability of failure of every possible intersection of cut sets. So, the above equation is 

now solved by summing the probability of failure of each subset each. Sorry each cut set 

given by this expression along with the probabilities of failure of every possible along 

with the probability of failure of every possible intersection of the cut sets identified of 

course, using appropriate sign that is very important it is an algebraic summation. 
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For the example we are discussing we are discussing 2 cut sets where identified. What 

are they? They are c 4 which is 2, 3 and 4 and c 5; which is 1 and 4, therefore let e 4 and 

e 5 represent the events associated with the parallel sub system where the cut sets c 4, c 5 

fail, now I should say representatively because e 4 is also with c 4 and e 5 with c 5 

respectively. 

Then one can say e 4 is nothing, but there is nothing, but related to c 4 therefore, 2, 3, 4 

are there. Therefore, i can say g 2 of x less than equal to 0 intersection g 3 of x less than 

equal to 0 intersecting g 4 of x less than equal to 0 that is going to be e 4 and e 5; 

obviously, in the similar pattern is e 5 compress of c 5 is a 1 and 4. So, 1 can say g 1 less 

than 0 intersecting g 4 less than 0 calls as equation number 19. 
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Therefore, probability of failure is given by probability of failure is p of e 4 plus p of e 5 

because, these are the 2 events from the cut sets minus p of e 4, e 5 which is essentially 

derive based on the rules of probability, what we studied in the first model call equation 

number 20. So, for explanation p e 4 is nothing, but phi of 3 which has arguments of 

reliability index b 4 and r 4 p of e 5 is approximately phi of 2 of minus beta 5, r 5 and e 4 

e 5 is probability of phi 4 minus beta 4, 5 beta 4, 5 equation number 21. 

Where beta 4 is; beta 2, beta 3, beta 4; r 4 is the correlation matrix which is going to be 

1, alpha 3, alpha 2, alpha 4, alpha 1, alpha 2, alpha 3, 1; alpha 4, alpha 3, alpha 2, alpha 

4, alpha 3, alpha 4, and 1.  
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And in this case alpha 2, 3 and alpha 2, 4 again 1 alpha 4, 3 and 1 alpha 3, 4 that is going 

to make r 4, 5. 

Friends, in this lecture we are able to estimate the probability of failure for example, of a 

minimum cut system taken from the general system, applied the mathematical 

simplification of converting the non normal variables. So, a normal variate space and 

variable to estimate the probability of failure using the rules of probability theory what 

we studied in the first module.  

We will extend this discussion further and try to understand how this can be further in 

detail being done, and then we will take up this application later with a numerical 

example. 

Thank you very much. 


