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Welcome to the 11th lecture on module-1 on the online course title Risk and Reliability 

of Offshore Structures. 
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Today, we will talk about the 11th lecture. I will continue to discuss more issues on 

random variables. In the last lecture, we already said, what is actually the physical 

meaning of a random variable, and how a random variable can be generated under 

different conditions, including (Refer Time: 01:10) type variables. We also said how 

Monte Carlo simulation method can be used to generate random variable of a conditional 

distribution.  

Let us slightly rewind back, and start from Monte Carlo simulation method. One can 

always express probability of failure as an expected value of an indicator function. So, 

let us say, I want to express probability of failure as an expected value of indicator 

function, which I can write as, probability of failure can be given by an expected value of 

indicator function. Let this be equation 1. Now, estimated or probability of failure is then 



given by, which can be 1 by N of sum of N equals 1 to N; i equals 1 to N, because we 

know this (Refer Time: 02:47); q i, which we know, this is q bar, where q bar is the 

sample mean obtained, is the sample mean obtained from N simulations of the random 

vector X. 
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It is interesting and important for all of us to know that, probability of failure is now also 

a random variable in the present discussion, because, the argument is a random variable 

here. 

Therefore, the expected value of this estimator can be given by, or can be written as 

expected value of, let us say, P hat failure is expected value of 1 by N of summation of i 

equals 1 to N of q i, which can be written as 1 by N of summation of i equals 1 to N of q 

i, which is nothing, but, 1 by N of N of probability of failure, which is nothing, but, 

probability of failure. And, we call this as equation number 3. If you look at this equation 

closely, one can say that, the P hat is an unbiased estimator of probability of failure. 

Now, the variance of this value is given by variance of probability of failure hat, is 

variance of 1 by N of summation q i, which can be said as 1 by N 2 of variation of 

summation of i equals 1 to N of q i, which can be said as, 1 by N 2 of variance of q i, 

which is nothing, but, 1 by N probability of failure 1 minus probability of failure; call 

this equation number 4. 
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Now, the coefficient of variation of P hat of f which is used to quantify the accuracy of 

the estimate, because this is required to quantify the accuracy of the estimate, which is 

given by, let us say, a function delta, where delta can be said as root of probability of 

failure, 1 minus probability of failure, by N, divided by probability of failure. 

Interestingly, if you look at the coefficient of variation expression, one can see that, delta 

decreases, with increase in the number of simulations.  

What does it mean? This implies the statement that, the estimate of probability of failure 

improves, as the analysis proceeds; because, the number of simulations are more and 

more; as you proceed with the analysis, the estimate of probability of failure will be kept 

on improving. The coefficient of variance can be used to decide as and when the 

simulation should be stopped. So now, the question is, what is the tolerable, or a target 

value? Now, the tolerable, or target value for delta need to be fixed, if you really want to 

stop the simulation.  
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So, we call this as delta target. Let this be delta target and this should be specified, and 

therefore, if it reaches this value, simulation can be terminated. Usually, delta target is 

kept between the braces of 0.01 to 0.05, for a typical simulation. So, if we look at an 

example, let us say, let delta target is set as 0.05; then, approximately, you require 39600 

simulations. So, that is the order of simulation. Now, in the whole discussion, we actually 

do not know the probability of failure. So, the probability of failure is an unknown value, 

because, we are interested in only estimating this. Therefore, this is unknown a prior to 

the analysis; only after the analysis, I know this.  

Interestingly, this implies a very interesting statement that, the number of simulations 

required to compute probability of failure is also not known until the analysis is 

complete. So, they are interrelated. What target value you fix, that will govern the 

number of simulation you require. Since you do not know, at what number of simulation 

you will be able to fix up the delta target, which can give you a probability failure with a 

closer accuracy, the number of simulations required to achieve the probability of failure, 

which is said to be an accurate value, is also not known. Therefore, there is a question 

which is coming in mind, how to improve this accuracy. Another question asked is, how 

to improve the accuracy of the simulation. 
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How to improve the accuracy of the simulation? There are two ways by which we are 

going to do this. Point number one, by increasing the number of simulations. In my 

exercise, I am taking this as N. The second could be, by increasing the probability of 

failure. Obviously, as a risk analyst, or as a reliability engineer, you would not prefer the 

second option. You want to make the estimate of probability of failure as accurate as 

possible. So, based upon the better engineering judgment, one will not prefer to increase 

the probability of failure; rather, one will be interested to address the problem by 

increasing the number of simulations. So, the moment we agree that, it is important to 

increase the number of simulation, then, the question comes, what is the importance of 

sampling? 
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So, now, what is the importance of sampling? Sampling is important, ladies and 

gentleman, since reliability estimates are probabilistic based. One of the methods of 

reducing the variables in Monte Carlo simulation, or estimate of the probability of failure 

of a component system, is by understanding the importance of sampling. Let us try to 

rewrite the probability of failure slightly, in a different way. 

Let us say, call probability of failure as I x f x h x h x d x, where h of x is the sampling 

density function, and i of x, f of x, h of x, now becomes the indicator. It is therefore 

important to note that, the sampling density function h of x is chosen to remain as non0, 

wherever i of h of x is 0. 
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So, the condition is, the sampling density function h of x should remain non–0, wherever 

i x f of x is non–0. Now, the question asked is, why this condition is essential. This is 

important due to the fact that, no regions of failure domain are excluded from the 

analysis. So, wherever it is non-0, we should be able to capture those points, where we 

do not exclude them in the no regions of failure domain. So, using the definition of the 

expected operator, one can rewrite the probability of failure as. So, using the expected 

operator, probability of failure can be rewritten as. So, the probability of failure is 

expected value of i of x, f of x, h of x.  

Earlier, it was only i of x; now, the indicator function is modified. So, let me call this as 

equation number 7. The vital point in the whole discussion is to choose the sampling 

density function. So, the vital point is to choose the sampling density function, which is h 

of x, such that, sampling is done more frequently from the failure domain, not from the 

safe domain.  

So, therefore, ideal sampling function could be h of x, i of x, f of x, probability of failure; 

because, I want to choose the sampling density function such that, sampling is done more 

from the failure domain; that is very important. So, the vital point is, we choose sampling 

density function such that, sampling is done more in the failure domain. So, if that is the 

case, then this condition is valid. So, that sampling density function ideally should be 

given by this expression. For this choice of equation 8 to be valid, mean of the estimate 



identical to property of failure with a 0 variance for any N. 
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So, for equation 8 to be valid, mean of the estimate should be identical to probability of 

failure, with a non 0 variance, for any N; that is very important condition. But 

interestingly, this ideal situation is not practical. Why? This situation or this condition is 

not practical. Why? In simple, it is not practical, because, the probability of failure is 

what is computed from the whole exercise; you cannot only say the non-0 variance. 

Therefore, selecting a sampling density function is a critical step. 

So, selecting h of x is a critical step. In fact, a very poor choice of sampling density 

function can increase the variance of probability of failure, thereby making the Monte 

Carlo simulation very crude. So, several sampling functions are published in the 

literature; please look at the reference given in the NPTEL website; there are many 

papers addressing this. We will pick up one such method, and explain this in detail. So, 

now, the question is focused on how to choose the sampling density function, because, it 

is very important. 
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 If the sampling density function is not properly chosen, it can lead to a very crude 

Monte Carlo simulation. One of the methods, proposed in the literature, one such method 

proposed in the literature is with hyper rectangle, using hyper rectangle. So, let us try to 

plot this. So, these are my u 1 and u 2; that is my, this is my domain of failure; that is my 

hyper rectangle. I shade this; this is my hyper rectangle; this area. Within this, I can pick 

up any particular value, and choose a design point, which is indicated as u dash. So, the 

domain here is given as g of u is 0. So, this is one of the method by which the sampling 

density function h of x can be selected. This method is called hyper rectangle method, 

given by Shinozuka in 1983.  

In this method, the whole scenario is about the design point. This point, where the system 

is tangent, and this becomes normal, is what we call as the design point. The whole 

difficulty is to choose this design point, because, the whole method is centered about the 

design point. Unfortunately, the estimate of probability of failure obtained using this 

approach, is biased, as the procedure does not assign any sampling density to regions of 

failure domain. The sampling density is not completely assigned to the regions of failure 

domain. Therefore, the result obtained from this method is slightly biased; 

mathematically, will not be equal to the true probability of failure. 
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So, if it is known that the safe set in the standard normal space is concave, if the safe set 

in the standard normal space is concave, as shown in this figure here, then, the sampling 

over the half space can be defined by a different equation. If the space in the safe domain 

is concave, then, sampling over the half domain is given by alpha transpose u should be 

greater than or equal to beta, where alpha is a unit normal to the surface, to the straight 

surface at the design point, and beta is called the first order reliability index, which has 

been tested upon by Hasofer-Lind later, which we will discuss in the second module; 

Hasofer-Lind method which focuses again, on how to obtain the design point, and 

therefore, from that, how to get the reliability index.  

Now, to improve the accuracy of this estimate of the failure, to improve the accuracy of 

failure estimate, one should improve the efficiency of the simulation method, the 

efficiency of the simulation method need to be improved.  
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Let us alternately see another method. Graphically, this is u 1; that is a u 2. I have a 

failure domain again plotted. Let us say, I draw a tangent hyper plane. Let me draw a 

tangent hyper plane; wherever this plane is intersecting a point, identify that as the 

design point; and, I can now say, this plane can be beta minus alpha T u is 0. So, 

obviously, this is going to be, g of u is 0, and this is going to be alpha, and this is now 

going to be beta minus alpha T u, is less than or equal to 0.  

And, of course, we call this point as u dash. So, graphically, the hyper rectangle method 

is improved by drawing a tangent hyper plane, and then, identifying a design point, based 

on which, now, I can define the sampling density function h of x accordingly, so that, the 

failure probability estimate can be improved. Now, the sampling function for this case is 

given by, let us say, h of u, is phi n of u, which is the normal function, by phi of minus 

beta, where beta is the reliability index, or 0, if beta minus alpha transpose u should be 

less than or equal to 0; this is equation number 9. 

In this approach, it is important to estimate the value of u, such that, a specific condition 

can be satisfied. 
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So, in this method, in this, let us say, modified method, it is important to estimate u, 

because, the function is about u, which can satisfy the condition u, given beta minus 

alpha transpose u, should be less than or equal to 0. There are different steps involved in 

generating this sample. We will look into the steps in the next lecture in detail. So, now, 

we are working on random variables, how to generate random variables, what are 

different methods available, and how Monte Carlo simulation can be improved, what is 

the importance of sampling, in the whole exercise and discussion, how to choose an 

appropriate sampling density function h of x, which can improve, or decline the accuracy 

of probability of failure, because, you must choose the sampling density function h of x 

in such a manner that, most of the points of h of x, or h of u, are taken from the failure 

domain. We have also seen in this lecture, what is the necessity to obtain delta target so 

that, one can truncate, or one can stop the simulation of Monte Carlo method.  

Approximately, you require about 40000 simulations, if you say, my delta target is about 

0.05, or, let us say, 5 percent. If we do not choose an appropriate sampling density 

function h of x, it may lead to a very crude way of simulating the sample, which can 

result in very high inaccuracy of estimating probability of failure. Of course, there are 

some parallel references available, which have been given in the literature. Please read 

them, and try to correlate the equations written, and the methods explained in the lecture, 

so that, if you have any difficulties, please do write to me; we will try to explain it in 

detail.  



Thank you.  


