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Numerical Examples – Eigenvalue Problems 

 

Welcome to the 15th Lecture on Module 1 on Dynamics of Ocean Structures. In this 

particular lecture we will talk about some examples on Eigenvalue Problems. 

(Refer Slide Time: 00:15) 

 

We have made couple of examples in the last few lectures to make you to understand 

how write equations of motion for a single degree and two degree, same concept for 

multi degree. How you can use principles of mechanics for finding out equivalent lateral 

stiffness matrix and how to get the frequency of vibration for an idealized single degree 

freedom system model. Now if it is a double degree or multi degree how will you 

actually get the omega that is the problem what we are going to address today. But there 

is a very classical difficulty in writing in equation of motion which we have experienced 

in the last few examples. 



Now, equation of motion can become simple if you choose the degrees of freedom as per 

the motion. It means the choice of degree of freedom will help you to make the equation 

of motion simple. We will take an example where the degrees of freedom are not marked 

at the point where the mass is lumped. In all other real examples we had seen the systems 

where the degrees of freedom are marked at the points where mass is lumped, but we 

very well know that the number of points lumped does not qualify for degree of freedom 

degree of freedom is related to only to displacements. But fortunately or knowing we 

keep on lumping the mass at the points where degrees of freedom are marked, therefore 

mass matrix became always diagonal it was easy for us to solve. 

Now we will take an example where if the degrees of freedom were not marked at the 

point where the mass is lumped or if the degree of freedom is marked at the point where 

the force is applied what happens to the equation of motion, what is the complexity; that 

is what we are going to talk about. We will take an example like this let us say, I have a 

system may be a pad or a deck resting on let us say two springs with two different 

stiffness. Just for understanding purposes otherwise you will not know if you put both as 

k we will actually not know which k I am handling in the equation. So, make it k 1 and k 

2. 

System has got some c g, this is the point. At this point which is the mass center I say my 

degrees of freedom in terms of force and rotation are marked. So, the force in the vertical 

axis applied at the c g point and the rotational motion is also applied, because spring has 

different stiffness so the pad will be keep on oscillating it will create a motion or a 

rotation about this point c g obviously; therefore we take that as the force P theta is the 

moment applied and this is the vertical force. 

Whereas, the degrees of freedom are marked at the point where stiffness is applied, let us 

say this is my x 1 and this is my x 2. And of course, the mass is capital M with the total 

mass of course the continuous mass can be m by l ,and if the length is l then obviously 

the total m by l will give you the capital mass. Let us even consider this l between the 

points where this degrees of freedom is marked where let us say this is l let us not take it 

to be l. Hypothetically the points are at the end I have given a deliberate space for you to 

see they are actually at the ends. 



So, there are some important observations in this problem. The problem shows that the 

forces P t and P theta are not applied at the point where the degrees of freedom are 

marked; that is the first observation. The second observation is the degrees of freedom 

are marked at selected in locations where stiffness is concentrated. So, from an first hand 

understanding we will know that if you select the degrees of freedom at the point where 

the mass is lumped you experienced the mass matrix to be diagonally dominant and half 

the elements we becoming 0. You can expect that in the stiffness matrix now. So, it is a 

very simple thumb rule, if your degrees of freedom aligned either with lumped mass 

points or with a stiffness points either of them will become half diagonal 0. 

In the earlier examples you saw that force is applied at a point where the degrees of 

freedom are measured. For example, a frame problem we had x 1 and x 2 we had a 

lateral force. In the previous cases we had x 1 and x 2 and we had a spring force. So, we 

always mark the forces where the degrees of freedom were marked or selected, but in 

this particular example I deliberately violated this norm saying that my forces will be 

applied to the c g where the degrees of freedom are not measured at c g, deliberately 

violation let us see what happens to this problem. 

If you have problem of this nature how will you solve. Before we solve this problem 

write equation of motion let us try to understand what the practical applicability of this 

problem is, where this problem applies. This has got two significant applications; one it 

can be a foundation resting on a soil where the soil stiffness is modeled as a (Refer Time: 

06:34) equivalent springs. That is one classical example of geo technical application on 

dynamics. 

The second can be you want to isolate this deck from the sub structure by some system. 

It means the vibration of the deck should not be transferred to the supporting system. It 

can be sea bed, it can be pipe or it can be any other secondary or primary system on 

which the secondary system is resting. The idealized example of this could be a 

typewriter in olden days where people used to keep a pad below when the typewriter is 

being used the table does not vibrate or you would have noticed the typewriter is kept 

directly on the table you would see the legs of the table will get loosened very quickly 

because typewrite posses lot of vibration in vertical and horizontal axis. 



So, these are nothing but isolators which is a very common practice in earthquake 

engineering. It has got very good applications practically in many examples we will take 

an idealized model. Now we all know at this moment clearly that it is a two degree 

freedom system model a spring mass system, mass is continuous of m by l nature spring 

is available here. One can also convert it to an equivalent lateral stiffness of springs are 

in parallel you can always find k equivalent and you can always say the mass is lambda 

at this point and let the degrees of freedom also be lumped here, you can convert this to 

equivalent to single degree and solve. But I want to solve this as such as a two degree 

problem and I want to write equation of motion for this. 

(Refer Slide Time: 08:10) 

 

Let us first start with the stiffness matrix. We know k ij is the stiffness coefficient I want 

to find force at ith degree I give unit displacement at jth degree and I get the force 

keeping all other degrees of freedom (Refer Time: 08:26). Now, this is the spring point 

which is actually hinged so there is no moment. This displacement which is x 1 should 

be unity as per the derivation so I will get the force. The force will be applied vertically 

in the same direction because I want to apply this displacement I must pull this spring up, 

I must pull this spring up to give this displacement otherwise I cannot give this 

displacement x 1 up. So, I should say this as my k 1 1 row first column next and I must 

get this as my k 2 1 row first column next. 



Remember stiffness matrix will be always derived column wise, you are giving 

displacement to the first degree getting the force at all other degrees 1, 2, 3, 4, etcetera, 

but the second subscript will always remain 1 because you are giving unit displacement 

at the first degree, so the first degree is here. Obviously, k 1 1 will be practically equal to 

my k 1 because k 1 is nothing but force per displacement. The displacement is known to 

be as unity I will get the force of the spring stiffness itself, is it not. And of course, the 

spring does not move at all, therefore this is going to be 0. 

Similarly, I give unit displacement here and I want to pull the spring up, therefore this is 

going to be k 2 2 row first column next and this is also going to be k 1 2 row first column 

next, stiffness matrix is always derived column wise so the second column is now 

available to you. And for unit deflection or unit displacement in x 2 direction k 2 is the 

stiffness therefore this will having simply k 2 and this will be 0, because this spring does 

not move at all, no extension cost to this spring. So, my stiffness matrix now is a 2 by 2 

matrix, why because there are 2 degrees of freedom if there are n degrees of freedom the 

stiffness matrix will be always n by n. 

Remember the stiffness mass damping all will be always a square matrix. So, I can enter 

the values here k 1 0 0 k 2. You will experience immediately since the degrees of 

freedom I have marked at the points where the stiffness is focused the half diagonal 

elements are becoming 0 which was the practice earlier in mass matrix. Because the 

point where it is degrees of freedom are marked where the points fortunately where the 

mass was lumped, therefore mass matrix became diagonal now stiffness matrix became 

diagonal. 

So, one can immediately expect that the mass if we derived now for this problem will not 

be the off diagonal elements will not be 0 should not be rather 0 that is the cross check. 

Let us say I want to derive the force vector. Now why am I deriving a force vector, 

because force is applied at a point different that of degrees of freedom. Now I want to 

know the contribution of P t at x 1 and x 2 the contribution of P theta at x 1 and x 2 

locations they are different. If had x 1 and x 2 be in located exactly at here and here 

obviously x 1 and x theta then P t and P theta will be an simple vector. But, in that case it 



is not so because the contribution of P t at x 1 location x 2 location has got to be derived 

they are not applied. Let us derive this. 

I apply P t here so obviously by symmetry we know this is P t by 2 and this is P t by 2. I 

have taken a very simple example for you to understand. Similarly apply P theta here, so 

it is a clockwise moment I must have an anticlockwise couple we already know this 

system of understanding which will be P theta by l and P theta by l, where l is the length 

between the forces or the reaction. Remember these reactions are actually offered by the 

springs, so the spacing between the springs is l, hypothetically the springs are at the ends, 

but I have shown you to make it understand that they are located in the system like this. 

So, let us sum this two, because they are independent let us sum this two and try to find 

out. So the complete reaction will be minus of let us say my P t is acting downward so I 

am putting it upward because I want x 1 in upward direction I can write this as minus of 

P t by 2 plus P theta by l. Similarly, x 2 also I want in the upward direction the force 

should be in the direction of that of x 2, x 2 is upward. Therefore, I should say it is P 

theta by l minus P t by 2. So, my force vector is like this. The p vector which is the force 

vector is minus P t by 2 plus P theta by l, P theta by l minus P t by 2; my other force 

vector. 

So there is no damping matrix here, because there is no damping applied to the system 

here externally. So, damping matrix need not be derived. This is 2 by 1, it is a vector two 

rows and one column. Let us derive the mass matrix. 
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We know that mass matrix is not going to have 0 off diagonal elements, they are called 

off diagonal; o f f, they are not half off diagonal elements. They will not be 0 because 

mass is continuous here, whereas degrees of freedom are not measured to the point 

where the mass is supposed to be lumped which is the mass center or center of mass for 

center of gravity of the system. We will derive the mass matrix as the same fashion as 

that of stiffness. What we do is instead of giving unit displacement I give unit 

acceleration, same pattern I am just following the same algorithm but I do not give unit 

displacement for stiffness but I give unit acceleration for mass matrix. 

So, all acting down I have reactions and this value which will act at the c g of this 

triangular loading will be m by l of l which is considered as capital M. I will call this as 

small m that is the mass matrix coefficient as 2 1 1. The second subscript 1 shows that I 

have given unit acceleration at the first degree. The first subscript 1 and 2 shows these 

are the respective locations where mass needs to be worked out because these are the 

degrees of freedom map in the problem. 

So, 11 and 21 I want to find these two from principles of statics very easily. I will take 

moment of this point, so m 21 multiplied by the distance which is l should be equal to 

half that is the triangular loading base is l height is unity, but it is m by l of l of unity into 



one third of l. So, this becomes m this l goes away, so my m 21 essentially becomes m by 

6 half l m by l this is unity there is no l here there is unity. So, this gives me the m value, 

m by 6. Half m by l of l into l minus m 21, so m by 3 into 1 sorry m by l into l or into 1 

of (Refer Time: 18:05) let this l as a length; this 1 is the acceleration. 

Similarly, for the second load you apply unit acceleration here which is x 2 double dot is 

unity and you get these values as m 12 and m 22, the second subscript indicates unit 

acceleration is at second degree and I will get m 22 as m by 3 and m 12 as m by 6. So, 

my mass matrix will be m by 3 m by 6, m by 6 m by 3. You will see that the off diagonal 

elements are not 0 and however the matrix is diagonally dominant the values will be 

higher along the diagonal, along the leading diagonal. It is call leading diagonal of the 

matrix. The other is called the off diagonal of the matrix. 

(Refer Slide Time: 19:31) 

 

I have now k matrix, I have now m I have f of t I can even write the equation of motion 

simply as M x double dot k x f of t which is this 2 by 2 2 by 1 2 by 2 2 by 1 2 by 1. So, 

that is the total compatibly, the equation is written. Now we know how to how to solve 

this. We have to now examine how to solve this equation of motion and how to find the 

essential characteristics of this function like omega and phi. Because in the earlier 

examples is being single degree or idealized single degree we could find omega n very 



easily either by finding out equivalence stiffness matrix or by a single stiffness and single 

mass we can find omega n. But in this case they are all full matrices. All the time we are 

not able to idealize it to a single degree you must know how to solve for the natural 

frequency in the given system, what will be now called as classical Eigen solver 

problem. We will now enter into that. 

Now any difficulty here, so we have learnt two things here, if the degrees of freedom are 

not selected carefully you will end up in a system where the stiffness matrix can become 

0 the mass matrix will have off diagonal elements. But, one uniformity in all the 

problems is that the stiffness matrix and mass matrix in vector all will be symmetric and 

square more or less. But, in offshore structures it is interesting to know that off diagonal 

elements are the matrix stiffness and mass may become asymmetric also. One can easily 

argue a question that if the matrix remains all the times symmetric then I can easily 

singularize this matrix and use either only upper triangular or lower triangular I can save 

some times in solving this matrix, whereas in offshore structures the matrix that have to 

be solved is a full size because you will have asymmetric elements in the matrix. 

So, where are those examples will come, because in this case you see matrix whether k 

not in this case in other cases either k or m they become more or less symmetric. But 

there should be some cases of structural forms of offshore structures which will invoke 

asymmetric non-diagonal elements. So, what those and why they became asymmetric 

that is very interesting to know. Remember friends only in offshore structure classical 

form of geometry asymmetric elements in (Refer Time: 22:11) are available. In all other 

structural forms they will be always symmetric only, so offshore structure therefore very 

special because we must know why they are asymmetric. I will come to that later in the 

second module. 

Now let us understand simple problem first. So, now the question asked is, now I have 

my mass k and c and f of t which are available to me how do I get the natural frequency 

of vibration of this model; that is my problem what we call classical Eigen solver. This 

example which you discuss can also be discussed as a play field problem, where a person 

sits and plays here and the springs what you see here are the legs of the person who 

pushes and recoils. You must have used this game in the younger days it is always 



advisable that you play with your brother of sister, if your father and you play you will 

always either stay down or he will be always up. So, the recoil is very high. 

It is is a very simple model which is actually having a application of dynamics, because 

the force is applied at this point the pivot, whereas the reaction is given in different point. 

That is a very interesting example what you can realize now at this age. So, all the games 

which have been practiced in India have got actually best engineering about 100 years 

back. That is why our social culture and our intelligence are appreciated all over the 

world, because we have applied engineering in even playing of games also, but the 

unfortunate part is they were not documented. We read them separately; therefore we do 

not know how to integrate them. But when one they integrate it becomes the patent of 

somebody else in abroad. 

(Refer Slide Time: 24:00) 

 

We will take example one now the Classical Eigen Solver problem. We have already 

drawn this and derived this equation earlier yesterday in the last lecture. I will borrow the 

same equations I will precede further. This was a single way two story problem with 

lumped mass at this points which were 2 m and m and the height of the story was kept 

same even this was kept as 2 h and the degrees of freedom were marked here as x 1 and 

x 2 we also had the mass matrix as 2 m 0 0 m. Now you will appreciate why I am writing 



0 here because, mass is lumped at the same point where the degrees of freedom were 

marked. 

Stiffness matrix remains symmetric EI and h being the property of the material in the 

members and we say 24 EI by h cube as a multiplier out we say this is 3 minus 1 1, is it 

so. So, I simply say small k as 24 EI by h cube that is my small k, therefore my capital K 

becomes 3 k minus k minus k and k. You will again notice here that since stiffness is not 

the point where the degrees of freedom are marked the stiffness matrix is in total and 

stiffness matrix is leading diagonal larger and it is symmetric. These are classical 

observations which you must keep on repeatedly observing when you keep on writing 

these matrices so that you know that you are not making any mistake, and you will also 

know that carefully how you will select these degrees of freedom so that they 

automatically get formed in a normal generation. 

Now, I have equation of motion which is m x double dot k x as 0, because there is no 

force applied to the system. Then one may ask the question if there is no force then why 

displacement we all can talk about free vibration. We also know that even the force not 

applied can give a displacement and system will vibrate. So, I want to know the 

frequency of vibration or frequencies of vibration of this system. 

(Refer Slide Time: 26:41) 

 



 So, eigenvalue problem, now the first step is to find omega n that is natural frequencies 

on the system. Now, one can ask a question; how many natural frequencies will be given 

in the system if the degrees of freedom is n, the degrees of freedom in a given system are 

n you will have n number of natural frequencies. Of course this n does not stand for the 

number they stand for natural, the suffix n stand for natural. If you have n degrees of 

freedom here you will have n omegas the interesting part is all these n omegas all will be 

unique. Let us see how. 

So, to find omega the classical eigenvalue problem says take a determinant of an 

equation which is k minus omega square m and set it to 0. That is the mathematical 

implication of finding eigenvalue solvers. Let us do that here determinant of 3 k minus 

omega square 2 m, I am substituting the k and m value respectively in the respective 

slots; m is 0 here therefore it is minus k minus k and k minus omega square m and set it 

to 0. So, 3 k minus 2 omega square m of k minus omega square m minus k square is 0. 

(Refer Slide Time: 28:44) 

 

So, 3 k square minus 3 omega square k m minus 2 omega square k m plus 2 omega 4 m 

square minus k square is equal 0. Implies 2 k square minus 5 omega square of k m plus 2 

omega 4 m square is equal 0. Let omega square be x. So, 2 k square minus 5 x k m plus 2 

x square m square is 0 2 x square m square minus 5 x k m plus 2 k square is 0. 



So, can you find the roots x 1 and x 2? The simple quadratic in x; to simplify you will get 

x 1 comma x 2 as 5 plus or minus 3 k m by 4 m square. This multiply and this multiply 

(Refer Time: 30:53) which implies that x 1 can be 8 by 4 2 k by m and x 2 can be 5 

minus 3 2 by 4, so k by 2 m. We already know that x is omega square. So, can I say this 

is omega 1 square and this is omega 2 square? Yes, already x is omega square, so x 1 is 

omega 1 square x 2 is omega 2 square. These are the frequencies, because you know k 

and m, k is nothing but 24 EI by h cube m is m kg which is given in the problem. You 

can easily find omega 1 and omega 2 which we wanted. 

But unfortunately the moment you start working on multi degrees along with the 

frequency one more pair will be generated that is called Mode Shapes. So, mode shapes 

and frequencies are like husband and wife. 

(Refer Slide Time: 32:18) 

. 

So, one you have frequencies; frequencies not frequency, if you have frequencies it will 

automatically generate a pair which is mode shape. Mathematically this is called 

Eigenvalue and this is called Eigen Vector. So, the term itself very clearly tells me that 

this is the number; this is the corresponding vector to that number. That used to call 

eigenvalue and Eigen vector. This is a vector corresponding to one number. It means 



every eigenvalue will have one vector. If there are two eigenvalues there will be two 

vectors. 

So, the problem does not stop here. The moment you identify the husband we have to 

identify the wife also or you have identified the wife you must identify the husband 

otherwise it is dangerous. We have to identify both of them parallelly. Without one the 

other has no value, especially in India we believe strongly this. Therefore we have to 

identify this. Now we identify either the husband or the wife we really do not know, but 

we have to identify the corresponding counterpart, so we want to find the Eigen vector 

also. 

Now, mathematically to find the Eigen vector the rule is A minus lambda x is set to 0. A 

is the matrix which is k minus omega square m. So, k minus omega square m matrix is 

what we call as the A matrix. Multiply this matrix with the vector which is phi vector, 

which is the Eigen vector is set that to 0. Let us see how we can do this. We already have 

this matrix with us, I have erased but still you can help me writing this matrix which is 

going to be 3 k minus 2 m omega square minus k minus k k minus omega square m. 

Multiplied by 2 vectors phi 1 phi 2 set it to 0. 

That is a generic equation. Now remember in this equation we have the value of omega, 

so if you really wanted to find the first vector substitute omega 1 here you want to find 

the second vector substitute omega 2 here. I want to first substitute omega 1 and get phi 

1; phi 1 is not this phi 1, capital phi 1 first vector I want to get. So, each eigenvalue will 

have a unique corresponding vector. Let us do this. So, let me write down the values of 

omega 1 square and omega 2 square. 



(Refer Slide Time: 35:48) 

 

Omega 1 square is two k by m and omega 2 square is k by 2 m. 

(Refer Slide Time: 36:00) 

 

So, let us say omega 1 square, still remember we carefully notice this I am saying this is 

only an assumption that omega 1 value is equal to 2 k by m. One can ask me question 

amongst these two frequencies which is named as fundamental frequency or which is the 



first frequency in the first mode shift, unless otherwise you know the values of both you 

cannot find because these are nothing but the roots of the quadratic equation. Which root 

is cutting the x axis first we really do not know, because there are no algebraic value 

numeric values for this number. Let us first find the numeric value then we will say 

which is omega 1 and omega 2. 

This omega 1 does not mean this is the first frequency I am pointing omega 1 because it 

is going to correspond to my so called omega 1 in my problem. Ultimately after you get 

both omega 1 and omega 2 then I must consult and say this is the fundamental frequency 

(Refer Time: 36:58), because now I have no numeric value for this depending upon the 

value of k and m you know this values can be different. Therefore, we cannot comment 

that. So do not get confused that when I write omega 1 this is the first frequency or 

fundamental frequency not like that, we really do not know that you have to estimate 

that. In this problem deliberately I have taken it as omega 1, but it will not be omega 1 I 

have deliberately taken like this. 

Let us try to find out this. So, 3 k let omega 1 square be substituted, so 3 k minus 2 m of 

omega 1 square is evaluated 2 k by m minus k minus k k minus 2 k by m of m of phi 1 

phi 2 is set to 0. If I simplify this m goes away 4 k 3 k minus 4 k is minus k minus k 

minus k this goes away minus k of phi 1 phi 2 is set to 0. Let me expand this. Row and 

column are multiplied; we know how to multiply them. We can see the compatibility, 

they are perfectly compatible. So, minus k of phi 1 minus k of phi 2 is 0 minus k of phi 1 

minus k of phi 2 is 0. Both equations are same. Now there is a mathematical instability in 

solving this problem I have two unknowns phi 1 and phi 2, I must get two equations, but 

both of them are the same how I solve this. In this case please understand phi 1 and phi 2 

are relative values they are not absolute, so I will assume one get the other in proportion 

of the 1. That is why they are called relative numbers. So, I will take away this I will just 

retain only this part. 



(Refer Slide Time: 39:17) 

 

So, this implies that minus phi 1 is phi 2. Any equation you pickup this implies that 

minus phi 1 is phi 2. If phi 2 is phi 2 phi 1 is minus of phi 2 can I say this; if phi 2 is phi 

2 phi 1 is minus of phi 2, I got the value. Let us say let phi 2 be 1 phi 1 will be minus 1 

proportionate. So, my vector is very simple now for this the corresponding vector is 1 

and minus 1, no this is 1 and this is minus 1. Phi 1 is negative of phi 2. 

One can ask a very serious question here, sir you have taken phi 2 as phi 2. Say let phi 1 

be phi 1 phi 2 is minus phi 1 my vector is going to be 1 minus 1; this is not same as this, 

is this correct both are alright, they are proportionate value. So, if you are happy on 

Mondays this way, you do it if you are happy on Tuesdays do it this way so does not 

matter. We have got the first vector corresponding to the first value. Now I want to find 

the same (Refer Time: 40:36) of second set. So, k minus omega square m multiply with 

phi should set to 0 and let us do this matrix again. So, 3 k minus 2 omega square m 

minus k minus k minus k k minus omega square m, I substitute 2 here multiply this 

vector with phi 1 and phi 2 set it to 0. 

Please note this phi 1 is nothing to do with this phi 1, this is the second vector this is 

where the confusion will start. People will start substituting this values here they are 

messing up this is not, this is something different vector. Because remember that is why I 



said this is a husband of this wife, he cannot be a husband of this wife. This is very 

simple to understand physically like this. Provided this is applicable only to India I think 

but still it does not matter. Let us say phi 1 and phi 2. So, can you quickly find out phi 1 

and phi 2? Then you have to give me like this, which is 1 and which is 2 because I am 

confused which is 1. 

Now let us try to find out which is my fundamental frequency. There are two ways of 

finding out this. Pease understand this very carefully, this is the point where very 

intricate discussion and understanding is required. One way of finding out this is you 

substitute the value of k and m if you know get the numeric value. Now k I have 24 EI 

by h cube I will know the value of v (Refer Time: 42:49), I know the value of I the 

section is known to me, I know the dimension I can find, I know m I can find and get the 

numerical answer you can compare. But the easiest and correct way to find out is this 

when the vectors have got both positive representations there is no 0 crossing. Let us plot 

this. 

(Refer Slide Time: 43:08) 

 

This is my structural system, Eigen vectors are displacements relative to each other. Why 

displacements, the x 1 and x 2 are actually displacements. Now I say here from this 

vector if the first mass is displaced by one times, the second mass is displaced by two 



times as per this vector. So, the deflective shape of the mass does not cross equilibrium at 

any stage. This is called the first load. On the other hand to be as the thumb rule first 

mode will have all positive or all negative displacements. There should be no crossing. 

Now plot the second one. If the first mode is negative, the second mode is positive so I 

have a structure like this, it has crossed; this is second. Now, one can ask me a questions, 

sir let us plot the third mode in this case it is not applicable it has two crossing can we 

find out something related to this. If your mode is nth number you will have n minus one 

crossing. If the mode is the first number then no crossing, because 1 minus 1 becomes 0. 

Since, this is the first mode the corresponding wife is the first frequency. The 

corresponding eigenvalue is the first frequency which is this, so I can call this as 

fundamental even without knowing the values of k and m that is very very important to 

understand. 

Characteristics in the fundamental frequency should be based on the deflected shape or 

the mode shape of the system not on the numeric value alone. Now let us see if I 

substitute value what happens. Let us pick up this 24 EI by h cube by m and this value is 

2 into 24 EI by h cube by m. If I say EI by h cube m is a value of 1000, 15000 any 

number this value will be always (Refer Time: 45:42), which implies the same meaning 

it will the first mode. So, do not try to compare numeric answers and conclude the first 

mode or the fundamental frequency. Fundamental frequency is the first frequency at 

which the system will have no crossing from the equilibrium position. It is easy for us to 

identify. So, if I have n frequencies in a given system I will have n degrees of freedom I 

have n frequencies and all matrices mass, stiffness, everything will be a square of size n 

by n. 

Let us quickly spent over 5 more minutes to give you a self (Refer Time: 46:23) 

assignment which I want you to solve. So, there are some self assignments questions 

please pay attention to this and try to solve them. 
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A damper offers resistance to the value of 0.05 Newton at a constant velocity of 0.04 

meter per second. You can note down this values and try to solve them. The damper is 

used with stiffness of nine Newton per meter. Determine the damping ratio and 

frequency of the system when the mass of the system is 0.1 kg, of course a model study. 

Anyways the questions will be available posted in NPTEL we can see them later, but try 

to understand. Write down the known’s and unknowns clearly and are you capable of 

solving this problem. 
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The 2nd question is on a vibrating system which is given by the following parameter 

mass is given, stiffness is given, damping coefficient or constant is known. I want to find 

the damping factor zeta the natural frequency of damped vibration omega d which you 

already solved the similar problem in the class one can easily solve this problem. 
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The 3rd question is again a mass of 7 kg is kept on two slabs of isolators. There are two 

slabs of isolators the mass of 7 kg is kept. One is a synthetic rubber stiffness is so much, 

damping coefficient is so such. The second is the fibrous felt stiffness so much, damping 

so much. We are trying to work out a related discussion with these two. If the assembly is 

vibrated in the vertical direction actuating the series isolators determines the damped and 

undamped frequencies. 
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A vibrating system having a mass of 1 kg suspended by a spring of stiffness 10 or 1000 

Newton per meter. He has put a harmonic excitation of amplitude of 10 Newton’s. 

Assuming viscous damping find out resonance frequency it is forced vibration problem, 

resonance frequency, amplitude of resonance, frequency correspond to peak amplitude 

and the damped frequency omega d if c is known to you. 
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. 

The 5th problem; body of mass 70 kg suspended from a spring which deflects 2 

centimeters under the given load, so the static deflection is known to me. So, initial 

displacement x naught is now given to me. It is subjected to damping whose value is 

tuned to be 0.23 times of that of the value the critical damping. So, critical damping you 

must find out. Find the natural frequency of damped and undamped vibration and the 

ratio of successive amplitudes from the logarithmic decrement equation. If the body is 

now subjected to periodic disturbing force of 700 Newton’s and of frequency equal to 

0.78 times of omega d, then now find the amplitude of forced vibration and phase 

difference between the respective disturbing forces. 

So, try to solve this problem and understand the answers. We will not solve this problem 

here; this is a self assessment you have to solve. So, kindly do not post any request of 

giving the solution for this in NPTEL. We will not give this; actually it will remain as an 

unsolved until the exam is done. 


