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So, today we will discuss about some examples on two degree freedom system models. 

We will write down the equations of motion and try to solve them. So, first example, we 

will take up this problem. Let us say, I have two lumped mask points m 1 and m 2. So, 

from the CGF of m 1 and m 2, I measure the displacements and imply upon the restoring 

forces, call them as k 1 and k 2. I want to write the equation of motion; it should be 

equations of motion for the set problem. So, I will use Newton’s law to do this. I will also 

solve this problem or parallel problem using energy method. 

 

So, I draw a free body diagram for this mass m 1; I give a displacement here. So, when 

the mass m 1 starts moving towards right, this spring will restore it back and that will be 

nothing but k 1 of x 1, because constant of a spring is essentially, force or displacements. 

I multiply the displacements of the stiffness, I get the force that what I am doing here, 



when I try to move the mass towards right, this spring will oppose and let me mark that 

force in the opposite direction and this force will be k 2 of simply say x 1 minus x 2. 

 

It is an easy way of remembering. When the mass moves towards right, this spring will 

push the mass m 1 back, so I put the arrowed direction, take this stiffness and this is 

connected between two relative displacements. Take this as first and this as second. 

If you look at the second mass m 2, the second mass, again moving towards right, which 

is x 2 and this spring of stiffness will try to pull it back. I simply do the same algorithm. I 

say k 2 and I am picking up this displacement first and then putting the next relative 

displacement x. So, these are my free body diagrams based on which now I will write the 

equations of motion using Newton’s law. 
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So, Newton’s law states, that force is equal to mass into acceleration. So, let us pick up 

the first case. So, I will say, first degree of freedom or first degree of displacement, which 

is x 1, so which is going to be m 1 x 1 double dot, that is, the force, which is mass into 

acceleration of this and it is moving towards right. Therefore, I must say, this is equal to 

minus of k 1 of x 1 minus of k 2 of x 1 minus x 2. I pick up the x 1 coordinate separately, 



I say, minus of k 1 plus k 2 of x 1 plus k 2 of x 2. Bring it to the left, so m 1 x 1 double 

dot plus k 1 plus k 2 of k 1 minus k 2 of x 2 is 0, this is my first equation of motion. 

 

Look at the second degree. The mass is moving towards right, so again, force is mass 

displace acceleration. So, m 2 x 2 double dot and this is restoring to the opposite 

direction, so minus k 2 of x 2 minus x 1. So, I can say, this is minus k 2 x 2 plus k 2 x 1. 

So, m 2 x 2 double dot minus k 2 x 1 plus k 2 x 2 is 0. This is my second equation, this is 

my first equation. 
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Let me put this equation in a matrix form. There are two points, where the mass is (( )), 

one is at x 1, one is at x 2. Therefore, the mass matrix will be a diagonal matrix. I will 

come to this point little later of x 1 double dot and x 2 double dot, I am just converting 

this in a matrix form, plus stiffness matrix of displacement equals the force value. In my 

case, it is 0, so with x 1 the coefficient are k 1 plus k 2 minus k 2 minus k 2 k 2. 

So, this becomes my equations of motion. In a matrix form I can also write this as M x 

double dot plus k x as f of t, which in my case is 0. So, this is my equation of motion 

written in matrix form where mass matrix M is given by this, stiffness matrix k is given 

by this. So, we can draw very interesting information here. These are very, very 



important for writing the equations of motion in futuristic problems. Let us see what are 

those interesting information I can derive from these equations of motion. 
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The first information I derive is writing equation of motion. For a two degree or multi-

degree, using Newton’s method or Newton’s law of motion is simple. I can also use 

energy method, I will show that later. The second inference I derive is when the 

displacement coordinates are measured at lumped points of mass, mass matrix becomes 

diagonal. It means off-diagonal terms are absent. 

 

Three, usually stiffness matrix is a square symmetric diagonally dominant matrix. What 

does it mean is, it is a square matrix symmetric. Diagonal dominant means, any 

coefficient of this matrix laying along the leading diagonal will be larger than any other 

element in that row. So, diagonal dominant, it shows me, that inverse of this matrix exist. 

So, inverse of k is, what we call, flexibility matrix. So, inverse of this matrix exist. 

And of course, fourth and very simply observation is, that the size of this matrix will be 

of order n where n is the degree of (( )). So, two by two, therefore it is… This information 

is very important. You will see that this is very important information, which I will use 

later. 
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So, I want you to quickly write the equations of motion for the second problem, which I 

am giving here. I will give you five minutes time. So, m 1, m 2, x 1, x 2, 2k, k 2, so the 

equation of motion is given. This is how it is obtained. Let us do one more problem. I 

want you to write the equations of motion for this problem. 
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I can draw a free body diagram. I am helping you, if this mass moves down this spring 

will try to restore it back. So, this will be k 1 of x 1, whereas this spring will try to push it 

up. So, it is going to be k 2 of x 1 minus x 2, that is, for the mass m 1 and so on. 

Same way you can do further, if you do it for the mass m 2, move it down, the mass will 

move down this spring will try to push it up, those, that is going to be k 2 of x 2 minus x 

1. 

 

Always pick up the first value as the place where you are applying the inertia force when 

you have got relative displacement. I have picked up the first value as the place where the 

inertia force is applied, and then there is a relative displacement. When there is non-

relative displacement, simply use that value. That is all; it is a very simple algorithm. 
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So, I will get the equation of motion as… So, interestingly one can notice that when the 

mass is lumped at the same point where the displacement degrees of freedom are 

measured, the mass matrix will be diagonal. We will see an example, now if I violate this, 

what happens. Before that let us do one more problem of writing equation of motion 

using energy method. 
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So, I will use energy method now. So, write equation of motion. For multi-degree, 

equation of motion in energy method is given by Lagrange’s equation. Now, what is 

Lagrange’s equation? The Lagrange’s equation says, d by dt of partial derivative of 

kinetic energy with respect to q i dot minus partial derivative of kinetic energy with q i 

plus partial derivative of potential energy with q i plus partial derivate of dissipation 

energy with q i dot, should be given by equal to q i, where capital Q i is the forces in 

generalized coordinates of I. 
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Whereas, kinetic energy, potential energy and dissipation energy are given by the 

following equations: kinetic energy, half m x i square; potential energy, half k x i square; 

dissipation energy, half c x i dot square. So, use these expressions now and let us try to 

write the equations of motion for a two degree freedom system, as I am going to show 

you now. 
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So, we will neglect the frictional forces between the mass and the contact points. So, 

kinetic energy, half m 1 x 1 dot square, that is, half m 2 x 2 dot square; potential energy, 

half k relative displacement. So, we will use Lagrange’s equation to write down the 

equations of motion based on energy method. The Lagrange equation says, first find the 

partial derivate of the kinetic energy with respect to each one of the degree of freedom. 

 



(Refer Slide Time: 17:24) 

 
So, let us try to do that. First, potential kinetic energy with respect to… Instead of q i, I 

am using my coordinate generalized as x i. So, dou x 1 dot, that is what I am going to do 

here, partial derivative, because kinetic energy is a function of x 1 and x 2, both. I take a 

partial derivate of this. This will become simply x 1 dot. Similarly, dou kinetic energy of 

dou k 1, which is the second term here, obviously it is going to be 0. The third term, 

potential energy by dou x 1, that is the third term here. So, this is going to be minus of k 

of x 2 minus x 1, is that ok. Partial derivate of dissipation energy with respect to k 1 dot is 

0 because dissipation energy is not considered. I am not considering any frictional force 

between the mass and the plane of motion. 
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Similarly, I can do for the second case. So, dou kinetic energy by dou x 2 dot is m 2 x 2 

dot dou kinetic energy by dou x 2 0 dou potential energy by dou x 2 is k of x 2 minus x 1 

dou dissipation energy by dou x 2 dot is set to 0, because of the same reason. 

I will remove this. 
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So, for first degree of freedom, I may say, d by d t of this equation where all i will 

become 1. So, I must say, d by d t of this, which will give me m 1 x 1 double dot. I am 



differentiating this with respect to time minus k of x 2 minus x 1 will be 0 because there 

is no q i acting in the model. So, I should say, m 1 x 1 double dot plus k of x 1 minus k of 

x 2 is 0 will be my first equation of motion for this problem. 

 

For the second degree, again d by d t of this expression with respect to the second degree 

of freedom, which I have here, which will be m 2 x 2 double dot plus k of x 2 minus x 1 

is 0. I am putting 0 here because there is no q 2 term in the given model. So, I should say, 

m 2 x 2 double dot minus k of x 1 plus k of x 2 is 0. I can convert this in a matrix form as 

m 1 0 0 m 2 of x 1 double dot x 2 double dot plus k minus k minus k k of x 1 x 2 as 0, 

which is my equations of motion in a matrix form. 

 

You will again notice, that mass matrix becomes diagonal, stiffness matrix becomes 

diagonally dominant and symmetric and square because I am applying the mass lump at 

the same point where I am measuring the displacement. Let us quickly check whether I 

do the same problem with Newton’s law and get the same equation of motion. 

I will remove this. 
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So, if I take mass m 1 separately and draw a free body diagram, the mass moves to the 

right and this spring will push the mass back, which will be x 1 minus x 2, as I said 



already. Take the component of the stiffness here, use this coordinate first, when it is 

relatively connected pick up the second mass m 2, the mass moves to the right, the spring 

will bring it back. So, it is again, k of x 2 minus x 1, it is very simple algorithm to 

remember. So, draw the free body diagrams and then write down the equations of motion 

based on the Newton’s law, F is equal to ma and check, whether you are getting the same 

equations as you already have. 
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So, m 1 x 1 double dot is going to be minus of k of x 1 minus x 2, which will give me m 

1 x 1 double dot plus k x 1 minus k x 2 as 0. This is my first equation as same as what I 

am having here. Similarly, m 2 x 2 double dot is going to be minus of k of x 2 minus x 1, 

which will give me m 2 x 2 double dot minus k x 1 plus k x 2 is 0, which is as same as 

the same equation, which I got here. 

 

So, you can adopt any method for writing equations of motion. They have demonstrated 

it using a Lagrange’s equation, which is energy principal as well as Newton’s method, 

which you already know, but generally, the equations of motion are comfortably written 

using Newton’s method because they deal with forces, whereas Lagrange’s deals with the 

energy principles when you want to minimize or optimize or talk about response control 

in terms of energy mechanism. Then one can write equation of motion using energy 



methods, otherwise Newton’s law, which is adopting the force technique, will be simpler. 

Remember, very interestingly, here it is not depending upon in which way you want to 

solve the problem and these are all time variant, x 1 double dot, they are all time variants 

and so on, any questions here? 

 

So, one can solve or one can write equations of motion in any preferable method except 

the few, which we discussed in the first chapters on single degree of freedom system 

models. Now, throughout these examples we understood, that when the mass matrix or 

the mass is lumped at the point where displacement is measured, mass matrix becomes 

diagonal and diagonally dominant and off diagonal terms are generally 0. But is there 

case or are there any cases where we do not have the lump mass at the point where the 

displacement is measured?  

 

We will take an example exclusively on that form and see how to derive mass matrix for 

that situations because it is very important in our offshore structural systems. It is not 

necessary, that the force can be applied at the same point where the mass is concentrated 

or displacements need not be measured in the same point where the mass is (( )). I gave 

you a very simple example. I have got a floating, let us say, FPSO. The CG of the 

floating FPSO are somewhere located above the mean sea level, let us say, but I do not 

want to measure the displacements at the CG of the FPSO. I want to measure the 

displacement at the deck, it means, I am not interested in measuring the degrees of 

freedom or marking the degrees of freedom at the point where the mass is lumped. 

 

So, what will happen? How do I compute my mass? Not necessarily you should always 

want to know the displacements in the place where the mass is lumped and there may be 

instances where the force may be not applied at the same point where the mass is said to 

be lumped. For example, aerodynamic forces, they have got the derricks, they have got, 

let us say, cranes where wind force are acting on the top side of the structural system in 

offshore, whereas CG of the system is not at the point where the force is acting. 

Therefore, you will have to measure the displacement of the point where the force is 



acting because you want to know the maximum displacement but your mass is lumped at 

different point. 

 

What will happen in such situations? How do I write my equation of motion because I do 

not know how to derive my mass matrix? In this case it is simple because mass matrix 

becomes diagonal. There are cases where stiffness matrix also will become 

unsymmetrical, let us see. There are special cases, as we come, as we move on, in general 

stiffness matrices are generally square and symmetric. They may still remain square, but 

they may not remain symmetric. There can be access symmetric terms, which will 

influence the response behavior of the platform in certain cases, we will see. 

 

I have a very interesting question for you let me see who can answer this. In Lagrange’s 

expression I have one term, which is dou kinetic energy by dou q i, the kinetic energy is 

always a function of velocity. Why this term exist in Lagrange’s equation? Kinetic 

energy is always function of velocity, but why I have a term here? Think it over; any 

doubt? We will move to another problem where we will violate this standard and see 

what happens. 
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Take out a problem like this, example number, is it 5 or 6? See that will never settle, it is 

a democratic country, I think we should take OT. I have a deck, which rests on a system, 

which is supported by springs. It is a very typical model, there can be practical 

applications of this model, I will come to that slightly later. Let us say, this is my mass 

center, the total mass of the system is capital M, total mass. So, I have forces applied here 

as p t and p theta. These are the forces, which are applied on the system. Obviously, these 

forces are expected to be applied at the mass center, whereas I am crazy to measure the 

displacements at these locations where the spring is connected. So, I am violating the 

system saying, I do not want to measure my displacements at the point where the mass is 

lumped. What will happen to my equations of motion? This is my k 1 and k 2, I am 

deliberately varying them so that we see the derivations clearly. So, to find the stiffness 

matrix, first it is an axial stiffness, to find the stiffness matrix first. 
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So, first step is to find stiffness matrix. What will be the size of the matrix? Whether 

there are two degrees of freedom? Not because they are two sets of forces acting, two 

degrees of freedom. It also improvise a very important conclusion, degrees of freedom 

are not the points where the mass is lumped. Here I have got only one point where the 

mass is lumped; there are two degrees of freedom. I think we have cleared it very 



carefully in the previous definitions. So, you can always have a shortcut saying mass 

points are said to be the degrees of freedom, but it is not true always. For example, in this 

case, so I want to derive the stiffness matrix for this, so I give as usual, unit displacement 

at this end I put delta as 1. I do not give any displacement here; it is going to be a liner 

line because it is actually a hinge. 

 

So, the force, what I will get, which is responsible for causing this unit displacement is 

my stiffness, which I call as k 11. Force in the first degree because of displacement given 

in the first degree itself and obviously, this will be equal to k. Force in the second degree, 

because of displacement given in the first degree, remember stiffness matrix is always 

derived column-wise. The second number will be always same, so always column-wise, 

flexibility matrix is always row-wise. 

 

Obviously, from this figure one can easily understand, that k 1 is directly equal to k 

because that is the stiffness, because stiffness by definition is force by unit displacement. 

I am giving in displacement, therefore this value will be directly equal to my k 1 and 

what will be my k 21? No displacement, no force, is it not? Similarly, what will be this 

coefficient called? k… Always the second coefficient of the second number will remain 

same because column-wise, so k 22 will be equal to k 2 and k 12, 0. k matrix now is 

going to be k 1, 0, 0, k 2. 

 

Now, interestingly, you see what happened to my k matrix? It has become diagonal 

technically and dynamics literature people call this as coupling and uncoupling of 

stiffness and mass matrices, we will come to that later. Application parts terminologies, 

we will come slighter later, but what you can interesting see here, stiffness matrices 

become diagonal, whereas mass matrix will not become diagonal. If they become 

diagonal what will happen? The system will become… I will remove this, think it over. If 

stiffness and mass both becomes diagonal what happens? See, if these questions can be 

answered extempore, I think you can directly take the third module of these classes. 
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So, I want to now derive the force vector. Now, one may wonder, so why I am deriving 

the force vector. Remember very carefully, here I am applying forces at the point where 

the displacements are not measured, so I want to find what is the equivalent force of these 

components at x 1 and x 2. In the previous examples we always assumed, that either the 

force were 0 or the force was expected to apply at the point where the mass are 

concentrated and fortunately, the points where the mass were lumped, masses were 

lumped, we had also the degrees of freedom measure, so we had no confusions at all in 

the previous examples. 

 

But here we have got second conclusion, that the force are not applied at the point where 

displacements are measured. I will work out another problem where displacements are 

measured at this point, but the force are applied at this point, we will talk about that, that 

is also possible. You must visualize a physical importance of these problems, they may 

look like a simple application, I will come to that. Once we finish this I want to find the 

force vector, what would be the basis to find out this? I pick up this deck and apply let us 

say p t and the component of this will be because of symmetry p t by 2 and p t by 2 and I 

apply p theta, which is clockwise, so there is a clockwise moment. I would like to make 



an anticlockwise couple to counteract this that is nothing but p theta by l where l is the 

distance between these two points. 

 

So, now I have a vector p, the force vector, which is nothing but minus p t by 2 minus p 

theta by l. Similarly, the second one, if you look at, is going to be minus p t by 2 plus p 

theta by l. It is negative because the force, what we have here, is opposite to that of my 

direction of displacement and so on. So, I have got my force vector, which is a vector of 

two rows and one column. The third step will be to derive my mass matrix. Any doubt 

here? I will remove this. 
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Mass matrix, I have used the similar principle as that of k, use similar principle as that of 

k. I am taking very great care to write properly, but my handwriting is extraordinary. So, 

you have got to follow that carefully. It is one of the non-identifiable characteristic of my 

this thing, so you have got to follow it carefully, so keep all your organs on. So, I will use 

this, I will give unit acceleration, I call this as, let us say, let us say, x 1 double dot as 

unity and set this to 0. So, when you do that it will create mass and acceleration and this 

will be opposed by two reactions, I will call this as mass value 2 because applied at 1, I 

call this as mass value 1 applied at 1. Same concept I am using for stiffness, similar one, 



so let me take moment about this point, so this is going to act down, take moment about 

this point. So, M 21 of l will be half l height of M by l. I am finding out M per unit 

length. 

 

Now, M is the total value, is it not? And this is the force, one third of l, that is, the CG of 

this from here, so this will give me M 21. So, l, l goes away, l, l goes away, is it M by 6? 

So, M 11 will be the total area of this triangle or the total force or the total inertia of force 

minus the reaction force of M 21, which will be half l height M by l minus M by 6, which 

will be M by 3, is that ok. 
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Now, I want to find the second row, sorry, second column of the mass matrix. Same 

algorithm apply here for x 2 double dot as unity and apply these forces and find these 

reactions at the distance l and so on. I call this value as M 22, I call this value as M 12, so 

can you quickly find out these two values? So, taking moment about this point, so M 12 

of l will be equal to anticlockwise of half base height M by l of one-third of l, this gives 

me M 12. l, l goes away, l goes away, M by 6 and M 22 will be half base height of M by l 

minus M by 6, which will be M by 3. So, my mass matrix now becomes M by 3, M by 6, 

M by 6, M by 3, which is not a diagonal matrix. So, by this way we can keep on working 



out all probabilities of putting the forces elsewhere, measure the displacements elsewhere 

and keep on doing it. 

 

Now, what is the practical significance of this problem? There are many applications of 

this particular example. Number one, this can be a problem of a seismic isolation where I 

raise my whole mass on a system supported by springs, so it is a seismic isolator. You 

may say why seismic, it can be even response control mechanism? I can give a very 

simple example of this practically. You must have seen in olden days people were using 

typewriters. Typewriters are normally not kept on the desk, directly on a table because 

what will happen, when you keep on using the typewriters, because of the vibration when 

you are using the typewriter, the legs of the table will get shake, so they put a pad and 

keep the typewriter over that. That is a vibration absorber. Similarly, here the response 

control, I can say vibration absorber. 

 

The third is an interesting geotechnical model where the super structure resting on the 

foundation on (( )) springs, where (( )) springs are represented as equivalent series of 

springs like this. So, there are many practical applications of a land diagram, what you 

see here, whereas forces are all applied to the mass center. The displacements need not be 

there at the mass center. This also proves very interesting in the one thing to us, that the 

degree of freedom is nothing related to the mass point. Here it is 2, whereas the mass is 

said to be constant only at 1 point. 

 

So, all confusions related to degree of freedom are point where the mass is concentrated 

are all gone. We already defined it very carefully and very clearly, that it is nothing 

related to mass concentration lumped mass points, but crudely one can remember like 

this, that wherever the mass are lumped, these are the number of degrees of freedom, but 

not always you see here. So, be very careful in marking them and always visualize a 

problem where are you measuring your displacements where the mass is concentrated, 

where are the forces applied. So, always equation of motion cannot be simply in the same 

form what we saw in the previous examples. It can slightly vary, so be very careful in 



marking these elements of or the dynamic characteristics of a problem. So, we have any 

questions here? I think we will stop here. 


