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So, in the last lecture, we discussed about undamped forced vibration. We already said 

that if you try to plot the deformation response factor versus the ratio of forcing 

frequency with that of natural frequency, you get a plot similar to this. So, at a bandwidth 

closer to one that is when the forcing frequency is equal to that of the natural frequency 

of the system; the governing equation is not able to quantify the value here; whereas this 

value remains as 1.0. And the closed form expression what we had for this was R d was 

given by 1 by mod of 1 minus omega by omega n square. And x of t in general was 

expressed as R d sin omega t minus phi of x st. And of course, phi had two values: 0 and 

180 depending upon whether omega is less than omega n or omega greater than omega n. 

Whereas, when omega equals omega n, this equation does not quantify the value in this 

band. So, we will extend this discussion further now when omega equals omega n what 

happens. 
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The system what I am discussing is this. I am applying F of t, which is P naught sin 

omega t. I am measuring x of t from the CG of the mass and I am applying a restoring 

constant k. That is an undamped system. So, when omega equals omega n, we had the 

equation of motion this way – m x double dot plus k x is P naught sin omega t; x double 

dot plus omega n square of k is P naught by m sin omega t. So, the x of t as the 

complimentary function is A cos omega n t plus B sin omega n t. And the particular 

integral is P naught by m sin omega t by d square plus omega n square. When I substitute 

omega equals omega n, the denominator will become 0 here, because I have to substitute 

D square as minus omega square or minus omega n square; denominator will become 0. 
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So, in that case, my particular integral can be P 0 by m t of, because t is the variable here 

– sin omega t. I can even use omega n here, because I am using the same and 

differentiate the denominator. So, I can now, say P 0 by 2 m t sin omega t by D; where, 

D is the differential operator, that is, d by dt of the argument. So, I now multiply this by 

D and D below; so, P by 2m t of differential operator of sin omega t by D square. I 

substitute D square as minus omega n square – minus P 0 by 2m t 1 by omega n square; I 

am having minus sign here – omega n cos omega n t. So, omega n is k by m minus P 

naught by 2k t omega n cos omega n t. 
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So, my total result, which will be a combination of complimentary function and 

particular integral will now become A cos omega n t plus b sin omega n t minus P naught 

by 2k omega n t cos omega n t. It is one and the same, because I am using omega or 

omega n same. So, let us eliminate A and B. At t is equal to 0, let x 0 and x dot 0 is set to 

0. So, x of t is here. I substitute this as 0. That will give me A. And I am putting 0; this 

term will go away. So, x dot of t will be a differential of this minus omega n A sin omega 

n t plus omega n B cos omega n t minus P naught by 2k omega n of cos omega n t minus 

omega n t sin omega n t. So, substituting this as 0, this term will go away. So, omega n of 

B minus P naught by 2k omega n; this term will become 1; and this term has a t value 

here. So, it goes away. So, that way, B becomes P 0 by 2k omega n by omega n. 
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So, my final answer of x of t is P naught by 2k sin omega n t minus P naught by 2k 

omega n t cos omega n t; is equal to P naught by 2k of omega n t cos omega n t minus sin 

omega n t. That is x of t. We already know, T n is 2 pi by omega n; I have omega n here. 

Let me substitute back here as 2 pi by T n. So, x of t now becomes minus P naught by 2k 

2 pi by T n of t of cos 2 pi by T n of t minus sin 2 pi by T n of t. I can also say x of t by x 

static; x static is nothing but P 0 by k. So, I will get this value as minus half of the whole 

equation back again 2 pi t by T n of cos of 2 pi t by T n minus sin 2 pi t by T n. I wish to 

plot this for different values of t by T n and see what happens to my ratio of x t to x 

static. 
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So, plotting x t by x static for different values of t by T n, let us try to plot this here in 

this format first – t by T n; let us see what will happen to the cos component; what will 

happen to the sin component; then what will happen to x of t by x static. Let us at least 

have samples of 3-4 values. Let us start with 0. So, this is my equation. So, see what 

happens when t by T n is 0. So, this term anyway goes away; there is a multiplier here. 

This term also goes away because sin component of 0 is 0. So, there is nothing; the value 

is not there. The next value I can start. Already there is a pi multiplier here inside the 

argument of both sin and cos. I no need to multiply by pi here again; I want to eliminate 

this to see a phase lag. So, I will start with half. So, if I substitute half, let us look at the 

cos argument here and see what happens. What will be the value of cos argument? Minus 

1. Sin argument – 0. So, what will happen to x of t? 

Student: Plus pi by 2. 

Plus pi by 2; let us be louder. Then let us start with 1. What happens to the cos 

argument? Cos argument… 

Student: 0, 1… 

It is interestingly, you can either have 0 or 1 only; let us not try another value. It will be 

plus 1. And what happens to the sin argument? 0. What happened to the ratio? 

Student: Minus pi. 



Minus pi. So, half, 1, 1 and a half. So, what happens to the cos argument? You can look 

at the scenario; 0, negative, positive, negative; so, minus 1. Look at the scenario; it can 

keep on jumping like this. Sin argument – 0; and ratio? 3 pi by 2. Is it all right? 3 pi by 2. 

Let us try to plot this. 
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This is going to be a ratio of t by T n, which I am plotting. This is going be the ratio of x 

of t by x static. So, let me mark these points as 0, half, 1, 1 and a half, 2 and so on. This 

is 0; this is half; this is 1; this is 3 by 2; this is 2 and so on. We already know the point 

here is 0. At half, it is plus pi by 2. So, it is here. And at 1, it is minus pi. So, it is here. 

And at 3 by 2, it is plus 3 pi by 2. It is here. So, let us try to draw… So, you can see here 

that, the response is getting increased like a bell; the positive value here is pi by 2; the 

next positive value here is 3pi by 2. So, for one cycle, let us say from positive to negative 

to positive – one cycle, the jump is pi. For one cycle, it will happen in the negative also; 

can plot it. So, actually, the plot will look more realistically like this. Keep on expanding. 

So, we can infer certain things from this data. Let us remove that. What are those 

inferences we get from this figure? 
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For an undamped system under forced vibration, the amplitude of the response grows 

gradually. It becomes very large only after number of cycles. It takes number of cycles to 

become very large. Now, when the system is brittle; if the system is brittle; during these 

number of cycles of response amplitude growing, the system will fail, because x t by x 

static, that is, the response ratio grows by pi times for every cycle. It is about 3.14 times. 

So, every cycle; one jump – three times; second jump – about six times and so on; keep 

on increasing. If ductile… I will remove this. 
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If the system is ductile, the gradual growth of the response amplitude will cause damage, 

which will make the system to yield. When the system yields, the system becomes 

flexible. When the system becomes flexible, stiffness reduces. When stiffness reduces, 

omega n changes and you will be out of this band; you will be out of this band actually. 

So, that is a great advantage. So, you must design offshore systems as ductile systems. It 

is because of this reason; offshore structure systems are essentially and primarily made 

out of steel. Then you may wonder that, where this ductility comes into play in selection 

of material. We have also seen that in the primitive lectures. 
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Look at the typical stress-strain curve. So, if you look at this ratio; I call this as epsilon 

ultimate; if you look at the yield point and call this as epsilon yield; the ductility ratio is 

epsilon ultimate by epsilon yield for classical steel, which is being used for offshore 

structural system. This is as high as 5 to 7. So, the material has got lot of reserve energy 

beyond the yield point before it fails. But, at the same time, the stiffness of the material; 

this is the initial stiffness. We understand the slope is actually the stiffness of this 

member or the material. The stiffness degrades. So, when the stiffness degrades, omega n 

changes. We are not worried whether it is going to increase or decrease; we cannot say 

that, because m is also playing a role here. What we are interested to say is that, when 

omega n changes, we are out of this band of resonance – so-called resonance. So, you 

will be away from the resonance band. So, system will not undergo a failure because of 

resonance band. That is very important information we gain even though the structure is 



undamped. These all argument is for undamped. So, what happens to damped? When it 

is damped? That is what our next argument is. Any question here? 

Student: Stiffness of the material or stiffness of the entire structure we have to… 

So, what he is trying to ask is, whether the stiffness is associated to material degradation 

or the stiffness of the whole structure? I will give you these equations later once I 

complete these arguments. But still, since he has raised this question… 
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If you are talking about bending stiffness for a column member of any boundary 

condition, k is given by 12 EI by l cube; where, l is the distance between the supports. 

So, now, stiffness is a function of Young’s modulus of the material, cross-sectional 

dimensions of the member, length of the member. Remember – it is not a function of 

boundary condition; it is not a function of boundary condition. Further, when you have 

got series of members aligned subjected to lateral force, then this k will now become a 

sum of multiplier of n 1 and n 2; where, n 1 will be the number of members acting along 

the force; and n 2 will be number of such frames, which are supporting this force. It 

means the whole geometric layout also becomes a function of k in addition to the 

material characteristic. Now, the degradation can happen in any form; it can be a local 

failure, where only the material yielded; it can be a global failure, where one of the 

frames fails. So, both of them will add and will influence the degradation of stiffness. 



Student: (( )) 

Now, what he is trying ask again a question is what would be the omega n value at the 

nu? So, we have got to talk about the tangent stiffness matrix of the global system. But, 

here I am taking a very simple example, where k is a linear spring and m is a single mass 

point. I am not talking about a frame of this type. When we talk about this in the second 

module, I will explain how this will help us. In this case, k is a simple linear stiffness, 

which is AE by l. So, how to estimate omega n in that case of failure? We will come to 

that. But, what we understand here is when omega n changes, the structural system or the 

single degree freedom system model will be away from the so-called dangerous band. 

So, the structure will not fail. But, omega will also chase omega n, because omega is also 

increasingly changing as far as we are concerned in ocean structural systems. So, we are 

not going to discuss that application problem now; we will talk about the next module, 

where we take examples of dynamic analysis of different offshore structural systems and 

we will see how we can interpret these results at that time. 

Now, we understand very simply that, the omega is a single value, which is P 0 sin 

omega t. whereas, omega n is a single number, which is simply k by m; and k is not a 

function of geometric layout, nothing like that; we have a single value. So, when this is 

equal, I have a resonance band. Now, this would not be equal, because stiffness will 

degrade. Why? There is a yielding happening if it is a ductile system. So, that is what the 

catch here is. Any question here? 

Now, our argument is, even when the structural system is not damped, there is an 

automatic phenomena, which takes the system out of the resonance band. But, one 

dangerous part here is, the ratio of response, that is, x t to x static keeps on increasing 

without any upper bound. It takes large number of cycles to reach a very large value. 

But, hypothetically, it can reach an infinite value also from this figure; keeps on going. It 

is like a bell; keeps on going; there is no upper bound on this. What happens when I 

introduce damping to the system? So, that will make interesting for us to understand 

what would be the difference. So, now, we will look at the damped system. 



(Refer Slide Time: 27:37) 

 

Forced vibration of of course single degree freedom system models; we are focusing on 

single degree. So, the conceptual diagram will look like this; which I am assuming as P 

naught sin omega t. I am measuring x of t from the CG or the mass center of this. I have 

restoring component k; I have damping component C; I am using a viscous damper 

model here. If I draw a free body diagram; when I apply a force F of t to the system, 

which is always present in the system for any instant of time t; it is a dynamic force. The 

restoring components will be stiffness multiplied by the displacement. And I am using a 

viscous damper model. So, C multiplied by the velocity; we already said this. And I 

know using Newton’s law, this force should be mass into acceleration, which will be m x 

double dot; which will be equal to F of t minus of this, because they are opposite in 

nature. So, I should say k x minus e x dot. So, I will get m x double dot plus C x dot plus 

k x as F of t as the equation of motion. 
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So, I write the auxiliary equation. Before that, let us divide this here itself; I think x 

double dot plus c by m of x dot plus omega n square of x is F of t by m. So, it is D square 

plus C by m of D plus omega n square is set to 0 always for an auxiliary equation. So, 

the roots: alpha 1 and alpha 2 for this to write down the complimentary function can be 

minus C by m plus or minus root of C by m whole square minus 4 omega n square by 2; 

equal to minus C by 2m plus or minus root of C by 2m whole square minus omega n 

square. So, we already know C by C c is the damping ratio zeta; and C c is C by 2m 

omega n. We already know this. Now, in this argument inside the parenthesis system 

what we call discriminate, there are two cases: C by 2m can be less than omega n; can be 

equal, can be greater. So, under damped, critically damped, and over damped. 
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Let us talk about the first case, where C by… So, let us talk about an under-damped case, 

where C by 2m is less than omega n. So, I can rewrite this equation as minus C by 2m 

plus or minus root of minus omega n square minus C by 2m the whole square; can be 

minus C by 2m plus or minus i omega n root of 1 minus zeta square, because C by 2m 

can be written as zeta omega n. So, zeta square omega n square; omega n square 

common out; 1 minus zeta square. So, we already know the damped frequency is 1 

minus zeta square. So, I can say minus C by 2m plus or minus i omega D. So, this 

becomes the real part; this becomes the imaginary part of the root. 
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So, I can write the complimentary function as x of t – e to the power of minus C by 2m 

of t of A cos omega D t plus B sin omega D t. So, C by 2m from this equation is zeta 

omega n. So, I can say e minus zeta omega n t A cos omega D t plus B sin omega D t. 

So, I have to also write the particular integral for this problem, which is P 0 by m sin 

omega t by D square plus C by m of D plus omega n square. D is a differential operator 

here. So, as usual, I substitute D square as minus omega square; P 0 by m sin omega t by 

minus omega square plus C by m of D plus omega n square. 
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Try to simplify this further. So, I can say P 0 by m omega n square – sin omega t by 1 

minus omega by omega n the whole square; C by m is 2 zeta omega n. C by m already 

we know is 2 zeta omega n. I have taken omega n square out to – plus 2 zeta by omega n 

of D. So, there is a differential operator here. I want to eliminate this. So, I can rewrite 

this equation slightly in a different form. I say P 0 by omega n square is k by m; I can 

straight away say P 0 by k. It is k by m. So, I write here as sin omega t by 1 minus omega 

by omega n the whole square plus 2 zeta by omega n of D. I am writing like this. So, you 

multiply the conjugate of this up; P naught by k into 1 minus omega by omega n the 

whole square minus 2 zeta by omega n into D into sin omega t by 1 minus omega by 

omega n the whole square of whole square minus 2 zeta by omega n into D the whole 

square. 
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It is equal to P naught by k into 1 minus omega by omega n the whole square minus 2 

zeta by omega n into D into sin omega t by 1 minus omega by omega n the whole square 

of whole square minus 4 zeta square by omega n into D square. So, now, I substitute this 

square as omega square minus omega square. So, if I do that… It becomes plus; I get 4 

zeta square omega by omega n the whole square by substituting… So, let me take this 

component multiplied by sin omega t and expand it, because I have a D here. D is a 

differential operator on sin omega t. 

Let us expand this. Let us do that; P 0 by k 1 minus omega by omega n the whole square 

of sin omega t by 1 minus omega by omega n the whole square of whole square plus 2 

zeta omega by omega n the whole square of sin omega t minus P 0 by k 2 zeta by omega 

n; of differential operator on sin omega t; so, I should say omega cos omega t by 1 minus 

omega by omega n the whole square of whole square plus 2 zeta omega by omega n the 

whole square. So, I have got two factors here or two components here. P 0 by k 1 minus 

this value multiplied by this sin omega t component; other is cos omega t component. 

Both of them are the function of forcing frequency. So, I call this as C and I call this as 

D; D is not a differential operator; some constant. 
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So, I can rewrite this expression as x of t e minus zeta omega n t of A cos omega D t plus 

B sin omega D t. That is what I have the complimentary function; plus C sin omega t – I 

say D – plus D; and D is nothing but minus of this value – cos omega t. That is x of t. 

Now, see here the inferences from this equation are the following. There are four 

components in this result; two of them are multiplied by an exponential decay function, 

because it is e power minus. So, the A and B components will decay, because there is an 

decaying function multiplied here. And they are also function of omega D, which is in 

turn function of omega n. So, I call this component as transient response, because A and 

B depends on initial condition. Look at the second component: C and D components. So, 

let us look at here. The C component – though we call this as a constant, this is only for 

us to easily write the equation. This is not a function of any initial condition. So, C and D 

component is what we address as steady state response. So, this is the case where when 

the model is under damped. And at that situation, if omega becomes equal to omega n, 

let us see what happens. 
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Now, I have a fundamental question to you; if I write a general expression like this, 

where I know the values of omega D and C’s and D’s and of course, A and B depending 

upon the initial conditions of the model; can I simply use the same expression for such 

conditions? Yes or no? Either you should say yes or no; keeping silent means we have to 

close the class. 

Student: Yes. 

Yes? Answer is no. The procedure can violate; the denominator may set to 0; we do not 

know. So, in this case, PI will now become again P 0 by m sin omega n t; I am using 

omega n in this case – by D square plus C by m of D plus omega n square. That is what 

the particular integral is. And I must say that, D square is equal to minus omega n square. 

In this case, it is not happening to become 0, because of the damping component present. 

But, I must derive it again. So, I must say P 0 by m sin omega n t by minus omega n 

square plus C by m of D plus omega n square. It is equal to P 0 by m sin omega n t; C by 

m is again 2 zeta omega n of D. I multiply this by D and D in the numerator and 

denominator; I get P 0 by m; I get D square here; so, differential of D, that is, omega n 

cos omega n t by D square is minus omega n square; so, I put minus omega n square 2 

zeta omega n. This goes away. This will become k by m; m goes away. I will say this as 

minus P naught by k; I should say 2 zeta k cos omega n t. 
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So, x of t will now get replaced as – for omega equals to omega n, that is replaced as e to 

the power of minus zeta omega n t of A cos omega dt plus B sin omega dt minus P 0 by 

2 zeta k cos omega n t. Now, I have a question. In both these expressions, here omega is 

not equal to omega n; here omega is equal to omega n. The commonness is these two 

terms remain same; only this term is getting varied. Mathematically, because the 

particular integral of these two functions isdifferent – mathematically. Physically, why 

they are same? You can come up; any answer let us see. 

Student: Initial condition is same. 

No. Do you understand that, both of them are same or are we wrong somewhere? Same 

right? We understand that. Why they are same? This condition and these conditions are 

not same. Mathematically, it is accepted, because the particular integral component of 

the solution is different, because the procedure is different physically. Just because they 

are same and we have identified them as transient response; it is because of this reason, 

transient response does not influence any of the conditions in the reality. That is why 

they are not considered to be important; they are not considered to be important at all, 

because they do not reflect the reality in terms of the behavior of the model. 

Then, again the same question, which I asked in the last lecture – why we are focusing 

on transient response? Same question is again coming to you back. Transient response 

will not influence the response of the model for a realistic condition as we discussed 



here. That is a physical understanding. And it is because of this reason; we do not 

actually give weightage to transient response in the analysis. I split this component into 

transient and steady state; look only at the window of the steady state to understand the 

more response intense functions of the model. Mathematically also, it is very clear that, 

they are same; it has no influence on the realistic conditions as we see here. The second 

question I leave it to you for homework is what will happen if omega is greater than 

omega n? That is over-damped systems. I have not solved this. Over damping; I want 

you to do it mathematically. And you will come out with only inferences and accept it. 

You must do this. So, we stop here. If you have any questions, we will be answering it; 

otherwise, we will continue in the next class.  

Thanks. 

 


