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So in today’s lecture, we will get started to understand the fundamental description of a 

ocean wave. I mean a progressive ocean wave which is assumed to be a sinusoidal 

variation. So, as we have seen in the last module two characteristics, two parameters are 

needed to describe the motion of the free surface which is the wave. The two parameters 

are wavelength or wave period and wave height. The wavelength and wave period are 

interrelated, if you can get the wave pe[riod]-, if you are given the wave period you can 

definitely get the wavelength or vice-versa. So, wave height is a amplitude height of the 

wave and wavelength is the distance between the any two successive crests.  
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So, here in we have either the small amplitude wave theory or the finite amplitude wave 

theories to describe the wave motion. To begin with we will try to understand the motion 



of a sinusoidal wave using the linear theory or the airy's theory please recollect when I 

say linear theory we assume that the wave height is small compared to the wavelength. 

We are talking about a wave in motion. So, naturally it has to have some kind of a 

potential and that velo[city]- and that potential is referred to as velocity potential. You 

know the definition of velocity potential, if you have the velocity potential you can 

differentiate to get the velocities in a particular direction of your interest. 

You can get displacements, you can get pressures etcetera. So, basic thing is the velocity 

potential which comes from our fluid mechanics. So, we need to establish a relationship 

for the velocity potential when a wave is in motion. The velocity potential can be 

obtained from a governing equation and in this case the governing equation is nothing, 

but the Laplace’s equation, del square phi is equal to 0. So, when you want to solve for 

the velocity potential from the governing Laplace’s equation it has to naturally be 

subjected to certain boundary conditions, and here in we have few boundary conditions 

which we apply in order to derive the velocity potential. 

So, the Bernoulli the laplace’s equation and the bernoulli’s dynamic equation together 

with proper appropriateah boundary conditions provide the necessary information to 

arrive at all the wave all the formulas that are needed, for describing the phenomena of 

ocean waves. Before we get to the derivation part derivation here in we will be looking at 

deriving the velocity potential and for a progressive wave. 
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What are the basic assumptions? Fluid flow is said to be irrotational, fluid is ideal, 

surface tension is neglected, pressure on the free surface is uniform and is assumed to be 

a constant, the seabed is rigid, horizontal and impermeable. Mind you that we are dealing 

with the most simplest case in order to understand the fundamentals. So, you have to 

digest when I say the seabed is rigid, horizontal and impermeable. The sea bed is not 

always impermeable , and it is not always horizontal, but we are considering the simplest 

condition. 

Based on these assumptions we will try to derive the velocity potential for the simplest 

case wave height is small compared to the wavelength and potential theory potential flow 

theory is applicable. So, when you have the velocity potential differentiation with respect 

to a particular direction gives the velocity in that particular direction given as dou phi by 

dou x , and dou phi by dou z. 
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Look at the definition sketch, in order to derive the velocity potential. So, this is the rigid 

horizontal seabed, this is the still water line over which you have the oscillation of the 

free water surface, this is the crest the difference distance between this is called as the 

wave height propagating in a water depth d , and we take the coordinate axes at this 

location, and you see that the coordinate axis this is the direction of wave propagation 

and this is vertical. So, any point in the fluid medium below the still water is referred to 

as minus z. 



So, if you are interested normally you’ll be interested in finding out the velocities at 

velocities due to the waves or I will simply say the velocity is our pressures etcetera 

under the wave in the fluid medium which will be within this area, and suppose you are 

referring to this location this point will be treated as minus z. 

And the distance, the wavelength is also indicated here and the governing equation as I 

said earlier is the Laplace’s equation, you have the continuity equation and, this is the 

what is this? This is nothing but the bernoulli’s equation. So, please remember the 

equation numbers I hope you are making note of the equations. So, that it becomes easier 

for you when you want to follow because I may be referring back to equation 2.2 or 2.3 

or whatever it is, and this equation governing equation will be valid over the fluid 

medium where extends upto ranges between minus infinity to plus infinity. 

And it will be varying from the sea bed which is now referred to as z equal to minus d, d 

is the water depth. So, here at this location it will be z equal to minus d and it is valid up 

to near the surface that is z equal to eta. Eta is nothing, but the variation of the height 

above the main water line. So, eta can be positive 0 or negative, but the wave height 

cannot be negative. It has to be only positive, because the distance between the crest and 

the trough. 

Now, the boundary conditions as I said earlier please remember the equation numbers 

the equation 2.1 that is nothing, but the Laplace’s equation has to be satisfied in the 

region which I have already said the pressure at the free surface is 0 when I say pressure 

at the free surface is zero, that means z equal to eta. 
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So, here in we are dealing with the linear waves. So, we neglect the higher order terms 

and as you have seen here we neglect these higher order terms and hence The laplace’s, I 

mean hence the Bernoulli equation reduces to as shown here in equation 2.4. So, when z 

equal to eta which is nothing, but at the free surface pressure is 0 this is what is called as 

dynamic free surface boundary condition. 

So, when you put this at z equal to eta and p equal to 0 you get a relationship for eta as 

shown here that is look at this z equal to eta that is this condition is at this point, any 

point z can be minus or plus that is what it means here again I am saying that this is 

obtained by, because of pressure being 0 at the free surface, which is called as the 

dynamic free surface boundary condition. 
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In the beginning itself, we said that the amplitude of the wave is much less compared to 

the wavelength hence, do not you think that you can apply this boundary condition at z 

equal to 0 itself, yes we can apply because the height of the wave is small. So, we are 

using z equal to 0 instead of z equal to minus eta, because of which the problem 

simplifies, as I said earlier this will be valid for wave parameters as shown here,d is the 

water depth H is the water height L is the wavelength. 

The definition sketch we have already seen earlier with the above boundary conditions 

the solutions to equation is now try to we will try to obtain the solutions. 
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We have one more condition which is called as the kinematic bottom boundary condition 

what does that say, that says that at the seabed the vertical velocity will be 0 which we 

will look into it while we are deriving the Laplace’s equation. Then you try to obtain the 

solution for Laplace equation.We are dealing with two dimensional flow. So, it is a 

boundary value problem two dimensional, and hence I can represent the velocity 

potential as a function of X Z and T which will be assumed to be a product of x which 

will be a function of x z a parameter which will be function of z and T which will be a 

function of T, when I assume the velocity potential as given here and then substitute in 

this Laplace’s equation, I obtain an equation as shown here. 

Here in each prime denotes differentiation being done once. Since we have double 

derivation we have two primes now, this is the equation which we have got from the 

Laplace’s equation. 
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And let us say that it is equal to a constant approximately equal to is a constant minus of 

k square when I do that equal to minus k square then I can write down as shownhere as 

an equation in terms of X and an equation in terms of Z. 
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From the basics of partial differential equations using the method of separable,you have 

to have a look at this method when you have an equation of this nature the solution to 

this equation can be written in this from, and the solution to this kind of an equation can 

be written in this form, because I am trying to skip some of this information, because this 



are this this information is available in standard text book for partial differential 

equations. 

So, when I substitute for X and Z in this equation then I get a solution to the velocity 

potential, which will be a function of x z and a few constants four constants A B C and D 

these two have been obtained from these two variables, and now this will remain this is 

the time variable, which we consider the periodicity of the wave. 
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So, when you have this form of a equation, this equation from the velocity potential can 

have four forms, because you see there are products this one ,this one, plus this one 

product of three terms I would say which which will give rise to four forms of equations 

ph[i]-phi 1, phi 2, phi 3, phi 4 again we are not done with the constants what does this 

equation give the solutions of velocity potentials are harmonic in time. 

We know that we are dealing with a simple harmonic motion,that means, the T has to be 

express in terms of t can be expressed the T can be expressed as a form of cos of sigma t 

or sin of sigma t. Hence you will have for this equation four forms of velocity potential 

phi 1, phi 2, phi 3 and phi 4 have a clear look at the combinations cos k of x into cos of 

sigma t sin k x into sigma sigma t then sin k x into cos sigma t. So, all these 

combinations are possible. So, we need to consider all these combinations and arrive at 

some kind of an expression in order to eliminate the constants, for which we resort to 



applying the boundary conditions this is the basics of any partial differential equation 

you want to apply a partial differential equation for any kind of a problem. 
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So, now we are going to be the process of determining the constants that is going to 

dictate the variation of the velocity potential. So, now the constants are determined by 

the dynamic free surface boundary conditions which I have earlier said and also the 

kinematic bottom boundary condition, what does the kinematic bottom boundary 

condition say, the bottom boundary condition says that the vertical velocity at the sea bed 

is zero. 

Here in the horizontal velocity or the velocity in the direction of wave propagation is 

termed as you that will be the in the x direction and in the vertical direction you will 

have vertical velocity referred to as w and that will be in the z direction, in the open 

ocean you are going to have one more component which will be perpendicular to the 

screen, if you consider that velocity component then we call it as three dimensional wave 

that we are avoiding rightnow in order we will understand step by step. 

So, the boundary condition when I said at the sea bed at the sea bed is nothing but z 

equal to minus d, and dou phi by dou z is the vertical velocity equal to zero. So, let me 

take this form of equation phi 2 first and then I apply this condition in order to obtain an 

expression when you differentiate this and equate to 0, I will get this equation. 



If you look at this equation can A 2 be 0 A 2 cannot be 0, because the velocity potential 

has to have some amount of potential, I mean some amount of magnitude. So, A 2 cannot 

be zero , can k x sine k x and sine sigma t be equal to 0 no because we are dealing with 

the simple harmonic motion. So, naturally out of this product only this has to be equal to 

zero. 

(Refer Slide Time: 23:22) 

 

So, we said this equal to 0, when we said this equal to 0, this is the kind of equation we 

will have. So, now and dou phi divided by dou t, at z equal to 0 what is it dou phi divided 

by dou t, at z equal to 0 that is coming from the dynamic free surface boundary 

condition. Is it clear? what was the dynamic free surface boundary condition please 

recollect it is eta equal to one by g into dou phi divided by dou t at z equal to zero, that 

was a dynamic free surface boundary condition which will lead to this kind of equation. 

Now, you see that phi 2 as the form as given here. Now let us assume that eta is equal to 

a into sine k x into cos of sigma t here, a is nothing but amplitude of the wave, wave 

height divided by two, and the free surface boundary condition is given here, we apply 

the free surface boundary condition to get this expression. So, now you see that we are 

trying to tackle 2 of 1 time.  
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So, because we get from this free surface boundary condition this is equal to now, 

substitute so, this is the equation. So, we substitute for this and then we get an expression 

for velocity potential what did we do we have eliminated the two constants a and d now 

we have an equation, as a function of amplitude that is a k d is the water depth z is at any 

particular location which shows that the velocity potential will be varying within the 

fluid medium from top to bottom, but still we have not got a kind of solution what we 

would like to have. 

So, let us consider phi 3 go back so, phi 3 is given here, we took phi 2 now, we are 

taking phi 3 when we take phi 3 apply the kinematic bottom boundary condition I am 

going to get we will get something like this.  
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So, again I repeat the amplitude cannot be zero, this cannot be zero because there has to 

be a phase therefore, I can get c equal to D into e to the power k d, now substitute for C 

in equation 13. 

Because that C is going to be in the form of D. So, I get an expression for the velocity 

potential that is phi 3 as shown here, if I differentiate that with respect to t in order to 

apply the dynamic free surface boundary condition I get an expression as shown here this 

is obtained by applying the dynamic free surface boundary condition, and then when I 

use this I get an expression I can easily solve for phi 3. So, now, you see that the 

procedure is quite straight forward in order to get the velocity potential phi 2 and phi 3, 

but both phi, phi 2 and phi 3 we have got the amplitude part fine. 
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See when you look at simple harmonic motion you have, what how do you define the 

simple harmonic motion amplitude into sin of some phase. So, this is going to be a 

amplitude, but this is going to be the whole thing has to be reduced to the phase. So, we 

have started from the fundamentals and trying to eliminate the constant which we have 

just now finished. Finally, we should try to get the form withwhich we are comfortable 

and with which we can represent the simple harmonic motion. So, I suggest after the 

lecture you go through all these equations and I am sure that it will be finding it quite 

comfortable. So, on a similar process, similar procedure you can also get expressions for 

phi 1 and phi 4 the other two forms of the velocity potential and all the constants are now 

eliminated. 

So, now if I assume that the positive velocity potential see velocity potential can be 

negative or positive.  
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So, if I assume that the velocity potential is a positive, I just take this form because phi 2 

is already there phi 1, phi 4 and phi 3, now phi 2 minus phi 1. I take combinations of any 

two forms of the velocity potential. In this case I take these two, which can easily be 

reduced as shown here, this is simple trigonometry. 

So, you can easily sit and derive this, know while doing this. So, this is the total 

velo[city]- one form of total velocity potential positive, what was the dynamic free 

surface boundary condition? this is what is the dynamic free surface boundary condition. 

So, initially we assumed an expression for theta eta that is the water surface elevation as 

shown here. So, we assume eta and try to derive the velocity potential, after deriving the 

velocity potential we try to reestablish what should be the variation of your eta. 

So, according to this we have got an expression for velocity potential which does not 

involve any constant, but involves only the variables associated with our wave 

propagation problem. Now I use this eta equal to one by g dou phi by dou t at z equal to 

zero, and my velocity potential now is this one with which I get eta equal to a into sin 

into k x minus sigma t. 

Now, we have got the basic equation of a sinusoidal wave, but what is this, this is the 

amplitude of the wave, and the here we have x, and we have t when we want to 

understand the characteristic of a wave we have to consider one full cycle, how do you 

consider one full cycle, you have to consider both in variation with respect to space as 



well as variation with respect to time, and that is what is brought up in this within this 

bracket. So, x is the variable that takes care of the space. 

What is the maximum space within one cycle? one wavelength and two pi is the total, in 

terms of radiance. So, k is two pi by l now what will be the value of k value of x, x will 

vary from zero to l. So, you are covering one full cycle which is equal to two pi. So, k is 

called as wave number and it is given as two pi divided by wave length. Now what is 

sigma, sigma is two pi by capital T , capital T is nothing but wave period. 

What is the value of small t, small t will be varying from 0 to capital T. So, one cycle for 

time is also taken into account. So, this phase takes considers both variation in space as 

well as in time. So, that is what I am writing here eta or the variation of spa[ce]- 

variation of the wave elevation is in both space and time, how do we understand this, 

now you assume simple thing is you assume a channel and a wave is moving from one 

end to another end, you try to at locate a point on the wave. 

So, when you try to move along the wave, because you have identified a point and when 

you try to move along the wave, in such a way that there you always in line with that 

particular point which you have identified, in if you are able to achieve that then what do 

we say that there is no phase difference between me and the wave, or the phase is a 

constant. In order to accomplish that, I have to move with certain speed only then I can 

accomplish so, that we and the wave are in the same phase or we do not have any phase 

difference I hope this clear. That is what I am trying to say here.  
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So, if I can do that then I can consider k x minus sigma t is equal to a constant that is 

there is no phase difference between me and the wave. When I say that this is a constant 

k as I said earlier, it is 2 pi by L and sigma is nothing but 2 pi by t. So, when I carry out 

the simplification I will get a value d x by d T equal to it boils down to L by T.what is L 

by T, L by T is nothing but d x by T which is nothing but the speed. So, now, you 

understand that the speed of the wave is the celerity it is also referred to as celerity.  

Now, let us move into now before I move into other aspect let me let us try to understand 

a bit more about the velocity potential. The velocity potential now here what we have 

considered is a cosine curve, if you assume the whole thing as theta. So, this is a cosine 

curve for a sine wave for the time being you assume that k x minus sigma t is equal to 

some theta.When the variation of the wave elevation each in the form of sin curve the 

potential will vary as in the form of a cosine curve. 

How does the velocity potential vary, potential the velocity potential will be a function of 

wave height, will be a function of wave period, because sigma is nothing but two pi by T 

it will be a function of wave length, and this will be varying as a function of z, from the 

still water as it go up to sea bed what will happen the velocity potential will be varying, 

and what kind of a variation it is,it is a hyperbolic variation. 

So, when you take a fluid medium, and when the wave is moving. So, I am considering 

only a sinusoidal wave then, at each elevation the velocity potential will be varying as a 



cosine curve at each z. What will be the magnitude, since we are dealing with hyperbolic 

function this magnitude will be higher near the free surface as you go down below, 

because of this hyperbolic function z is remember that z is negative. So, as we go down 

towards the sea bed, the value of this magnitude will decrease. One of the reason why we 

say that it is a surface phenomena more dominant near the surface the velocities velocity 

potential is higher close to the surface. 
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So, it varies along the surface upto the sea bed. So, now, I have just taken an example 

water depth as a hundred meters, wave period as ten seconds, and a wave height of eight 

meters. So, this gives me the relative water depth of about 0.44. Now in this slide I am 

just showing you the variation of eta here, and this is a sinusoidal variation. 

Now, the variation of the velocity potential at z equal to 0 that is at the still water line is 

shown here. This will be a cosine variation as we have already seen the variation of 

velocity potential and the variation of eta now here the phase variation is the phases just 

phase of the velocity potential is just of by about 90 degrees with respect to, of by 90 

degrees from the eta now youlook at the magnitude of the velocity potential. So, this is 

near the still water, at the still water and slightly below it that is 25 percent of the water 

depth, and this gives the variation of magnitude which is less than, at the still water line. 

Now, at a distance of about 50 percent of the water depth below the still water line. You 

will see that the velocity potential further reduces. So, you see the phase variation and 



how the velocity potential varies or reduces as you go towards the sea bed. So, I hope 

you have understood what happens when a wave is propagating the velocity varies the 

velocity potential varies when velocity potential varies naturally, the velocities have to 

vary which we will see later. 

Now, before going into further, we have looked at the variables, wavelength, wave 

period, water depth, etcetera. How do we get all these information because mostly the 

wave height and wave period are given to us. They form the basic characteristics to 

define a wave, but when you look at the velocity potentials see look here k is nothing, 

but wave number which is two pi by l, that wavelength we need to find out. 

How the wavelength and the wave period are dependent. This is what is called as the 

dispersion relationship the main assumption is dealing with a we are talking about the 

small amplitude wave, meaning that the slope of the wave, the slope of the wave being 

very small. We can assume the vertical displacement with respect to vertical 

displacement of the water surface, when I say water surface water surface elevation, 

when I say water surface it refers to eta that is variation of the displacement of the water 

surface with respect to time which is given as d eta by t ,can be approximately said to be 

equal to vertical velocity, I have basic definition. 

So, now basic definition is right, but then what how you can split this total derivative this 

total derivative can be split as dou eta by dou t partial derivative with respect to time into 

the special. What is this dou eta by dou x eta is elevation and x is the distance. So, dou 

eta by dou x is nothing but the slope. We have said that the wave slope is small, because 

we are assuming that the wave height is small. So, what will happen w is going to 

become now just dou eta by dou t. 



(Refer Slide Time: 46:39) 

 

What is w? w is nothing, but the velocity in the vertical direction, that is the reason why 

we have got our velocity potential known to make use of the velocity potential to 

evaluate the particle velocities. What we have seen earlier which is celerity is the speed 

of the wave itself. Now we are trying to understand when the wave is moving what is 

happening under the wave. So, you know that the velocity potential is going to vary 

within the fluid, within the fluid medium. So, is the velocity. So, horizontal the vertical 

velocity will be minus dou phi by dou z. 

So, I can equate these two, when I equate these two, I get this equation. Now I 

differentiate this as shown here let us see that equation, I have skipped something. So, 

this dou eta by dou t what about your velocity per free surface boundary condition ,this is 

the free surface boundary condition. I can differentiate this with respect to T then I have 

a double derivative here, and that is what I have done here dou eta by dou T using the 

free surface boundary condition, I get this equation. 
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Now, I can as well equate this and this, and the velocity potential is already known to 

you this is the velocity potential, and when you do this I get I can evaluate the constant 

and then finally, when you simplify you get an expression for relating t that is the wave 

period and wavelength. So, I have explained the methodology because you know this w, 

you know dou eta by dou t and then equating using the relationship into 2. 26 you can 

and equating these two equation 2.28 I can get an equation or an expression which is 

called as the dispersion relationship. 
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And what is sigma here 2 pi by T and k is 2 pi by L, and this above equation can also be 

written in this form, because once you substitute for sigma, and the wave number I can 

get an expression as shown here, now if you do not substitute for if you want to retain 

your k and only sigma you want to eliminate and I can just use 2 pi by t sigma. So, I can 

write the dispersion relationship in this form or in this form, but this is widely used, or 

the speed at which the waves moves, the wave moves. So, this is nothing but, what this is 

nothing but the speed of the wave. 

So, earlier we tried to find out that speed is nothing but L divided by T. Now we have 

derived the expression for the celerity. This is a generalized equation for the variation in 

celerity. Now with this I will we will just go into the next module in the next class.I hope 

things are quite clear today. So, you need to do some additional homework also, although 

we have given all the information so, you should look at some of the references books 

and try derive it yourself in order to become more and more familiar with this topic. 


