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Hello, welcome to Numerical Ship and Offshore Hydrodynamics. Today is the lecture 

44. Today we are going to discuss a new topic which is Time Domain Panel Method ok 
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and this is the keyword that you have to use to get this lecture. Now, in time domain 

panel method as you mention it is for the forward speed or you can say is the forward 

speed sea keeping problem. Now, in this case you know as I mentioned that always that 

there are several methods are available for each type of problem. 
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Now, what is the forward speed ship motion problem is as follows. Suppose, you have a 

ship and it is moving with a constant velocity U. Now, what is going to happen here 

apart from the you know when we discuss with the for this you know strip theory, we 

mentioned that the radiation force, diffraction force everything you have to find out for 

the zero speed. 

And, then there are lot of theories that incorporate the zero speed into the how to 

incorporate the forward speed into the solution. However, in this three-dimensional panel 

method is more sophisticated compared to the two-dimensional panel method. Because, 

here we do not have to solve the radiation diffraction problem or radiation problem in 

particular in zero speed here, we solve all the problem in forward speed only. 

Now, but remember here we do not consider the acceleration. So, therefore, the ship is 

moving only in horizontal location, it cannot take a turn. So, as you know that in order to 

take a turn it must accelerate, but we do not consider the acceleration of the ship. So, 

therefore, this ship is steadily moving forward. Now, it is steadily moving forward in the 

direction of the horizontal location or in the direction of surge. 
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However, still ship can oscillate in all degrees of motion right so, degrees of freedom. 

Now, what I means it means that if this is the ship it is moving forward, but at the same 

time it can forward like this way. So, it is heaving and also it is moving forward and then 

you can take this also if you consider the both the things it is moving like this way right. 

So, this is how the ship is moving. So, even if it is forward moving, still it can have the 6 

degrees of freedom motion. 

Now, here if you look at the solution of this particular problem, what is the solution 

method? So, if you look at the solution then you know here there are lot of ways you can 

solve this and lot of theories are available, lot of numerical methods are available. So, it 

is not possible to discuss all sorts of methods, we are focusing on only one single. Now, 

but it is good to know that what other methods are available to address this problem. 

Now, in solution you can define in two different thing. One is again the frequency 

domain or you can see the time domain right. Now, in frequency domain you can take 

the two type of Green’s function. So, one is only the Rankine right and another is the free 

surface Green’s function. Now, again in case of time domain also you can have again 

these two types. One of course, the Rankine and again of course, the free surface Green’s 

function ok. 

So, you can see there is a lot of theories are available right. I have frequency domain or I 

can have the time domain, again I have the free surface or Rankine. But, top of that now 

we are having some something we you can define as the we call this as coordinate, I 

mean the coordinate system. 
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Now, if you consider the coordinate system then one is there is a two reference. If you 

consider the coordinate system, then also we can have two coordinate systems. One is we 

can say is the earth fixed and one say the body fixed. Now, you see now you can see this 

lot of variation is available. Like this problem I can solve using the Rankine part, I can 

solve using the Rankine plus free surface part, I can solve in frequency domain. 

I can solve in the time domain or I can solve in the earth fixed system, I can solve in the 

body fixed system. Now, all other things we have discussed right, like the Rankine or 

free surface advantage, disadvantage everything. But, in case of a body fixed and earth 

fixed like the advantage of earth fixed system is that actually it is easier to incorporates 

kind of nonlinearity ok. 

However, there are lot of theories are available or lot of methods are available in the 

body fixed system. Here, we have the concept of m terms and, but this here we do not 

have the I mean we do not need this m terms for the earth fixed system. So, now, as I 

said everything is so, deep and each of this method require like tedious mathematics 

involved, theories involved and it is not possible to cover all sort of things right. 

So, let us pick one of them, like what I would like to pick which is the earth fixed 

system, as I said the reason behind this is here this comparatively little bit easier to 

incorporate the non- linearities compared to body fixed system; because we do not have 

to deal with the m terms. So, in case of a non-linear motions, m terms are really difficult.  
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In case of a linear it is very easy, you know that it is the first three terms is 0, fourth term 

is n3 and fifth term is n2 the normal. But, in three-dimensional is really a difficult task to 

get. So, now, on let us focus on the earth fixed system and try to figure out what is the 

boundary value problem for the earth fixed coordinate system. 
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Now, as a theoretical development, here we have defined two coordinate system, then o 

x y z is nothing the earth fixed system. And then of course, we need to fix another 

coordinate system which is the body fixed coordinate system. So, here we are defined 

this body fixed coordinate system is x’, y’ and z’ right. So, now, it is very elementary to 

see that both the coordinate system are related with the simple equation. So, I can define 

this, ' utx x  , then y y' and z z' . 

So, right so, very simple way these two can connect. Now, the question is why I need the 

body fixed system here? Now, the main reason is the Green’s function that we are 

actually computing that is we compute with respect to the body fixed system, because 

that is easier. Why it is easier, because you see if you remember that in body fixed 

system or earth fixed whatever you have to deal with something called 1/r. Now, with 1/r 

is nothing but the distance between the field point and the source point. 

Now, if I define this field point P here with respect to the source point Q over in the 

reference frame of 'x , y' , z' , then this distance remain invariant right; because I am 

moving with this velocity and then this P - Q remain invariant right. However, in case of 
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a earth fixed system, it actually translating right. So, therefore, this distance I mean know 

you know this now field point; it could be the any point. So, then this invariance may be 

not there. 

However, in present situation that we have the very stable code of the Green’s function 

evolution based on the earth fixed system. But however, this computation of the Green’s 

function we are getting in earth fixed system and then we connect the equation of motion 

with respect to the sorry that Green’s function do in the body fixed system and then the 

pressure and all again we come back in the earth fixed system ok anyway. 

So, this is the and also this S0 is nothing but the mean weighted surface as you know that 

when you solve the linear problem, we say it is S0 and   is nothing but the we call is the 

water line. So, this the top most which is at z = 0. So, at z = 0; so, this top part we can 

call this as a, this one is called the water plane, a water plane we call as a   ok, fine. 
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Now, this is the governing equation based on the earth fixed system. So, we are using 

that Laplacian of course, the 2 0  right? And, on the rigid surface which is 
n nV  . 

Now, this is the body boundary condition right and of course, this is the free surface 

boundary condition right. Now, I am writing here the non- linear free surface condition, 

why I am writing this we are definitely going to discuss later on. 
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And, then this is how I obtain the pressure. Now, if you remember that when you discuss 

with the linear system, we normally ignore the second order quadratic term. However, if 

I define the whole problem in earth fixed system, then we really do not ignore the second 

order term over here. So, therefore, we could say that this method is you know neither 

linear and nor non- linear, you can say it is a quasi linear formulation. 

Now, here we ignore this non- linear term this thing, we ignore this quadratic term to get 

the linearized free surface condition, because Green’s function does not work for Z  . 

It always work for z = 0. So, we have to use this, but when we use the pressure term that 

term, I am using the non- linear contribution ok. So, in that way we can say that this 

formulation is not purely linear or purely non- linear. It is we call is a quasi linear 

formulation. 
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Now, there is certain advantages of this formulation. Now, if you look at this rigid body 

equation 
n nV  , now I can change the 

nV  and then I can get you know some component 

of the force. Now, if I try to figure out what is the steady component of the force so, then 

actually this would be the boundary condition. Why? Now, here I can say that this 

n nV  . Now, if I only consider the steady part of it so; that means, it is moving steadily 

in forward. 

So, therefore, this Vn I can simply replace by U multiplied by the normal x component, 

Ux. So, then we can so, you know with this setting of the boundary condition, we can get 
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actually you know that is steadily moving diffraction problem right. So, this is one and 

second like or you can sorry is it is for the wave resistance problem. And, then if I 

consider this one, it means that you know that now here it is there is no there is no waves 

right. I am moving just steadily the forward that is my Vn. 

Now, if I say that body is moving and also you know wave is hitting. So, the scattered 

potential as you know it is basically the scattered potential 
s , I can call that a diffraction 

potential 
d  plus incident potential 

I right. So, in that case in this expression if I say that 

it is 
n




okay? So, before that let me that clear everything. 

(Refer Slide Time: 15:53) 

 

So, now in this here instead of 
n , if I take this with respect to the scattered potential

D  

is equal to 
n  I mean 

n D I xUn      because it is moving steadily forward, it is not 

oscillating. Because the ship, the right hand side is the body, body is moving steadily in 

the forward speed. 

So, then I can have del 
D I

xUn
n n

  
 

 
. Now, this is nothing but it is the forward speed 

diffraction problem right ok. Now, here actually here it is not the diffraction, it is the 

wave resistance; it is just moving forward in absence of waves. Now, if you incorporate 

the absence, then the second equation will come ok anyway. 

705



(Refer Slide Time: 17:05) 

 

So, now here it is I just wanted to write this because, this shows you some kind of you 

know easiness like how this earth fixed formulation from this how we could get the 

forward speed diffraction problem, I can formulate the wave resistance problem. So, we 

can see in a way it is a versatile ok. So, now, these two things actually what I said is if I 

go back over here this phi n equal to Vn, it is the my original radiation problem. 

Now, since here I am not decomposing, you know I am not decomposing here with all 

the 6  s right, that   equal to you know   diffraction plus   incident plus 6 mode of   

radiation; I am not doing it. What I am doing is slowly, slowly, slowly I am showing you 

how to change the boundary condition little bit. And, you can take all sort of problem 

you can find. 

You can find out the wave resistance problem, you can find out the forward speed 

diffraction problem right. In case of a zero speed problem also it is easy, because if you 

just drop this term because U = 0, you will get the zero speed diffraction problem right 

ok. 
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Now, here this is the major component of the   that I am using to address the classical 

ship motion problem. Now, carefully look at this phi. Here, in this   you can see here I 

decompose the total   only two component see. Now, in case of a linear problem, you 

know if you look at the strip theory or even in the zero speed radiation diffraction 

problem, we split the   into I  plus rigid body 6 mode and then diffraction. 

Now, here we are simply not using any such you know decomposition of the   further. 

We have only two component, it is called the wave instant wave potential and this we 

can call this as my disturb potential. So, in this disturb potential, actually all sort of 

radiation, diffraction, steady effect all are incorporated. So, therefore, you know that is 

why I showed you in previous slide that how actually I could you know get back. 

If I suppose, here now if you solve this problem, you really do not understand that what 

is the component of the diffraction potential here, what is the component of the radiation 

potential here, what is the component of the you know the steady wave part here. 

However, if I change this body boundary condition, actually I can get all sort of 

component. Now, can you tell me that how I can get the from this the wave resistance 

right, that we have done. Like I just drop this right and I just use this equal to Unx. 

So, therefore, I can get the wave resistance problem. Now, how I can get the forward 

speed diffraction problem? So, in forward speed diffraction problem, I need to change Vn 
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as this Unx and then it is 
I

n




 right? Now, suppose, if I ask you to find out what is the 

you know how I get the radiation problem right? We discuss how I get the wave 

resistance problem, we discussed how I get the diffraction problem, even you can get the 

zero speed also, just simply make this equal to 0. Now, my question is how we can get 

the radiation problem? 
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Now, here it is 
n




 equal to now in case of a you know radiation problem there is no 

waves. So, therefore, this term goes to 0. So, definitely it is equals to Vn. And, now if we 

assume, if we assume this is a harmonic function. So, you can take your 

displacement, x cos t . So, I can get the sinV t   . So, this you can change as 

sin . it n   and that the more you are interested to figure out this one. 

Now, if I say the forward speed diffraction problem, it is a zero speed diffraction 

problem right. Because, you know thus in forward speed diffraction what is happening, 

you have to consider ship is moving forward also.  

So, it is so, in case of a forward speed diffraction problem, this becomes 

sin .x iUn t n
n


 


 


 okay? So, this is the beauty of this formulation. We really, when 
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you solve the classical problem, the ship motion problem; we do not split up any of this 

radiation, diffraction for or the steady part. 

So, but with this general formulation, anytime you need you can always figure out what 

is the component of the diffraction, what is the component of the radiation and what is 

the component of the steady part. So, this is my boundary condition which is very 

important to me right. And of course, this is the linearized as I said; we are solving the 

linearized free surface condition because otherwise I cannot use the Green’s function. 

And, this is the initial condition, then or could the continuation of infinity everything is 

there. 
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So, now the next part is how what is my Green’s function right? Now, you can see over 

here we have this we call is the impulsive Green’s function, it is not pulsative Green’s 

function. Now, what is the difference between the pulsative and impulsive Green’s 

function? Pulsative Green’s function is that it is harmonically you are giving the 

disturbance. 

Now, here we are not harmonically giving this one, I just impact something, impulse 

though that is called impulsive Green’s function; I put it and then I allow it to carry out. 

So, that is called the impulsive Green’s function ok. Now, in this impulsive Green’s 

function, you can see this is the formulation right. And, here you can see this the 

definition of the r, definition of the r’ which is the image of r.  
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And, then you know this is how the R which is the projection and then J0 is called the 

Bessel function. So, this is the format of the Green’s function. So, definitely we are 

going to discuss how we can get this impulsive Green’s function, the solution of the 

impulsive in the later classes right. 
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Now, we are using the source formulation, now you see that I really do not want to go 

much detail into the formulation. We are only focusing on that equation and lot of 

theories are available, in reference I will put at the end all the journal available, we 

discuss this problem. So, all the details are there. Here, we can we are only taking that 

what is the important to us. 

The important here to solve the   and we are using the again the source method. We are 

not using the source dipole distribution. You can see here, this is the you know the final 

expression for the   and this final expression of for the phi involves the   right. And, 

now how this comes and how you know we finally, coming back to here that is not 

important. But you see here finally, what where we are arriving is as follows. 

We are having the surface integral over the mean weighted surface which is the body and  

also some integral over the water line. And, this only involve that the forward speed 

which is V; that means, the body is moving forward with the velocity V. So, in case of 

there is no velocity, then you do not have this term. This term you are only having when 
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you have the forward speed. Second thing this important is this is called the convolution 

integral. 

So, we have to integration having 0 to the present time step with that t  . Now, if you 

now if you remember our impulsive response function, that formulation also we are 

having the term t  . So, here also we are having the term t  . So, at least you can 

guess now why we call this as a impulsive Green’s function right. Because, in Green’s 

function again we are having the memory effect, that is what we call the memory effect. 

So, I am impulsing at this point and maybe some point and then actually I can see the 

memory effect also. Because, when the second time I am making the impulse, I consider 

that not only impulse also the memory effect which is coming from my previous impulse 

right. So, this is all the all theory is very very you know well discussed theory for many 

journal, paper everywhere it is there. So, let us not focusing on how this comes, let us 

focus on what is the final expression of the phi and how we are going to solve this   

okay? 
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And, then once you solve this  , now as you know that we have to in order to get the 

expression of I need the  . So, therefore, I do 
n




. So, in this expression, in this 

expression first I solve this  . We discussed so many times so, really do not need to 

repeat all these things and then we substitute this   in this   to get the  . 
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And, then when you get the  , I can get the pressure, when I get the pressure I can get 

the force. And, this is actually I am making the transformation, we already discussed in 

our previous classes in strip theory that how the now; this all formulates in the body 

fixed system. So, have to return back to the earth fixed system. So, I do this operation to 

change the pressure from the body fixed system to the earth fixed system. 
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And, then when it is done then I use the equation of motion, the total force I write the 

dynamic component which is for the  ,  disturbance, and, then the static component as 

you know is a hydrostatic component and this is the expression for the hydrostatic 

component. These are also we discussed a lot so; really we do not need to discuss over 

here. And finally, we have to solve using the time marching algorithm. 

Now, you see this is the basic setup of this the whole thing. So, from the next class 

onward, we slowly slowly we are going to touch each of the component; how I solve this 

 , how to get this   value, how to compute the Green’s function. And, how I converted 

the earth fixed system to body fixed system, everything we are going to discuss from the 

next class onward. Today is the overall the structure, I we discussed fine. So, let us stop 

today. 

Thank you. 
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