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Hello. Welcome to Numerical Ship and Offshore Hydrodynamics. So, today we are 

going to discuss this following topic that Formulation of the Source Panel Method. Now, 

if you remember in the last class, I said there are three different kind of panel method 

based on the discretization- one is source dipole that we have solved for the infinite fluid 

domain and then the source panel method another one is the dipole panel. Let us see that 

what the other methods are here. 
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And, this is the keyword that you have to use to get this lecture, ok. 
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So, let us go back to this. Now, formulation of the integral equation there is a three type 

of integral equation that we can think of. One is the source-dipole distribution over the 

boundary surface and that we have already discussed, in when we solve the infinite 

domain the fluid problem and get the infinite frequency added mass that time we have 

discussed this.  
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And, now today we are going to discuss, what is the only source distribution over the 

boundary surface. And, what is the only dipole distribution over the boundary surface, 

ok. 
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So, now this is the typical source-dipole distribution. And, where we know very well 

what is this equation, right. Here you have this left-hand side, this  p  if you 

remember this  p  is nothing but, 4  inside the fluid domain, right. And then 2 4   

inside the fluid domain 2  on the boundary and 0 outside the boundary. Sometimes, 

people actually take this  p , the value is 0 half and 1 based on that position is outside 

on the body or it is the inside the domain, ok. So, you can take  p , 4 , 2 , 0 or you 

can take 1, half and 0 anyway. 

Now, in inside this now let us consider that if there is a point here, inside the boundary, 

ok. So, then this is the equation. So, where   is the here inside the integral equation. 

This   is distribution of the velocity potential on the body. And then, in the left-hand 

side, this   indicate the velocity potential anywhere in the fluid domain, right. And then 

this is the equation, I can call this is a source dipole distribution. 

Now, think of a hypothetical situation. So, what is that hypothetical situation, like, in 

order to place this arbitrary point inside the fluid domain; let us place inside the body. 
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Now, inside the body there is no fluid, right. So, it you can think of that as a imaginary 

domain. Now, if you write the same integral equation for this imaginary domain, ok. So, 

then actually you know we can write this equation as follows. 
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Now, here what I said that, this now this P, now inside that if I go back here, this P is 

now in inside this B, ok. Now, if this P inside this the B then, this is let us assume that 

this is the boundary integral equation. now, here one must note that, the normal the 

normal is definitely the opposite. Now, see always we take a convention, that normal 

should be the inward to the fluid. 

Now, if we look at this the previous this one, here, this normal now you can see it is 

along this P here in this direction this is the inward to the fluid. Now, if you take inward 

to the domain betters better to say. Now, if it is here inside the middle of the B, ok, 

somewhere here. So, then the normal should be the inward to this. So, definitely the 

direction is normal should be opposite, you have to understand this very well. 

That is why I said, here definitely you can see the n  is nothing but, 'n
 . It should be n 

dash should be equal to minus of n so. So, now, so, that is why when you called this as n 

dash remember, this n dash it should be the inward to the body B, right. Like in case of 

the previous one, it should be the inward to the fluid. Now here it is inward to the body, 

that is the positive direction of the normal. 
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So, therefore, I understand very well that, n dash equal to minus of n, right. So, with this 

understanding now if you look at this equation 13, its the same equation instead of   I 

can call this   dash, ok. And instead of  I call this as a  . And,   is because is the 

same  , right. So, now, if we look at my equation 12, this one and then if I take this 

equation 13 this one and from these two equation actually I can get the equation 15. 

It is simply by adding the equation 12 and equation 13. Why? Because,  p  now it is 

the outside the domain. So, the value is should be equal to 0. Because, the hypothetical 

domain. So, therefore, the value should be equal to 0. So, now, if we add this 12 and 13 

then definitely, we are going to get this equation, right. Now, what to do with this 

equation? 

So, here it says  p  equal to over the S, it is    n n nG G ds      
 

, right. Now, 

from this equation how we can obtain the source panel method or the dipole panel 

method. 
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So, now, if I look at this equation 15 and if we apply the Dirichlet boundary condition. 

So, it says that at the boundary that    because you know, it is a hypothetical 

boundary that second one that based on that actually I am getting this equation 13. That 

equation is a hypothetical boundary. So, I can take at boundary any value for this  .  
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So, I said that, if I take    and then if I take  , I mean this is the second one that 

   n n n      , if I take as  . Now, what I did is here, I use the Dirichlet boundary 

condition. I said that I am taking   . So, this part goes to 0, right. If I do that, then 

actually and I am writing that 
n n    .  

So, if I do that then I can get the equation 16, right. Now, if I do the opposite, now if I 

use the Neumann boundary condition and if I write that nn   and     . So, then I 

can get the equation 17. So, this equation 16 is the source panel method. I mean this is 

the boundary integral for the source distribution. And, then equation 17 we can call this 

is the integral equation. It is the distribution of the dipole. 

Why, because, if you look at this equation 16, it is the distribution where the G is only 

there, right. Only the source is there, but dipole is absent. And, in equation 17 the only 

dipole that G n is there, but the source is absent, right. So, that is why we called this is the 

only source distribution method where, we have the I mean there we have only the G, but 

we do not have the Gn. 
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Now, taking this only source distribution, how do I solve this equation? Now, here, if 

you look at this equation now here you can see there is a two unknown, right. Now, let us 

go back to little bit in the let us go back to our board work. 
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If you remember, that in our source-dipole distribution this is nothing but, let us take 

 p  of course,    p p  equal to here you have over this body S and then we can 

call this let us take 
G

G ds
n n



  

   
  , right. Now, if you do that if you do that then 

here if you look at this equation, everything is known to you apart from this  , because 

n




 is nothing but, your v n that is known to you. And then G is also known to you and 

then 
G

n




 also known to you. So, only thing that is unknown to you is nothing but the  . 

Now, if you look at this equation if you look at this equation, here you can see that you 

have actually two unknown. One is that   of course, this is what we are going to obtain. 

And, second one is the  , the strength of the source, right so, but then we need two 

equation, right. So, what I do is, we differentiate that equation 18, with respect to n. So, 

if I do this then in the, right-hand side we have the 
n




 which is nothing but my Vn, the 

boundary condition if I apply over here, it is Vn. And, then, if we integrate this we will 

get this expression. 
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Now, here you know this equation 19 it is strictly for the lower order panel method. 

However, in the higher order panel method you really do not have this the term half of 

kp . So, now, how this equation is coming, let us try to see, ok. 
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Now, in this equation, what I am getting right now is  p  Gds   . So, this is I call 

this is the only source distribution. Now, if you discretize, ok, I just miss the  p , 

sorry. So, if you discretize this one. So, in lower order panel method what you are getting 

is    p p  and that should be equal to. Now, if I do the summation. So, we can take 

summation j=1 to number of panel n then it is j  and if you remember it is ( , )G i j ds . 

Now, here what I am doing, in each panel, I am doing it. Let us say take the constant 

panel method and if you take the - you know if you take the - what we call that one-point 

Gauss quadrature. Normally, we do not do here. But, for the understanding this- the 

second equation let us try to do that. Now, if you differentiate with respect to n, then 

what you get? You get ( )p
n




. 

Of course, and then it is 
1

( , )
n

j

j

G
i j ds

n







 , ok. 
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So, now  p  is there. Now, if I replace this as  p , if you remember correctly, the 

last time, when we solved with this you know if you take i, then here I have the 
1

n

j

 and 

then we have ( , )j j

G
i j ds

n





, let us say. Now, here, if I take i = j, ok, then I know this 

integral of this value is become you know 2 . 

Now, if I break it i = j and 
1

( )p
 the whole thing, ok. So, then what you get as follows, 

when i =  j then, I have here it is 
1

4
 and then I have the i  and multiply by the 2  , 

right, plus of course, 
1

( )p
 is there, we can take it is ,

1

1
( , )

( )

n

i j

j

G
i j ds

p n 




  . 

Now, if you take  p  inside this Green’s function, so here I can write it is, half of i  , 

because this will canceled out. And, then I just write this same as the integral from S into 

we can write here at, ok,   is here, right j  is here. So, it is j j

G
ds

n





. now, you see 

that is why this half of i  is coming. Now, it is only happening when you have this 

lower order panel method, right, fine. 
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So, now so, this is now I understand the equation 19 correctly, right. This is how this 

equation 18 and 19 should be. Now, I solved this equation 18, right, I mean so, first you 

need to solve the equation 19, right, because in equation 19 now, all the parameters is 

now known to you. You know the, right hand side is nothing but your the body boundary 

condition, right, that you know. 

You know the Green’s function, 
G

n




 and also. So, this is some that is the only thing that 

you I mean sigma that you need to know. So, here the only unknown is nothing but your, 

the sigma, right. So, therefore, first we solve this equation 19, I get the expression for 

sigma and then that expression I substitute in the equation 18 and then I get the value for 

phi, ok. So, now, this is how actually we can discretize the surface. 
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Now, as I said, that in higher order panel method, this is how we discretize the surface, 

the patches are big and we really do not assume that phi to be constant. And, in that case 

you know remember in this equation 19 you do not have this half into  , that you do not 

have, right. Now, in here in lower order panel method is a fine discretization we do. We 

assume everything is a quadrilateral panel and then we can solve this problem. Solve the 

thing and here in that case you have to take this as half 
i , right. 
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So, this is how I mean again I am repeating the same thing again and again just so, that 

you will be more comfortable with these things. I understand that, it is you know in order 

to understand it fully the repeatedly you have to see the thing. So, again many times I 

said the same thing here also the idea is discretize the body that boundary that this small 

small quadrilateral patch or triangular patch or both quadrilateral or triangular. 

And after that, we have to assume this velocity potential to be constant for a single panel 

and it should be the you know different for the different panel, right. 
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So, once we do that, then we can solve the equation. Now, here this is some 

understanding of the what I said. Now, I just take a one quadrant of the you know the 

this sphere now here you know sometimes we are using the symmetric property. Now, 

this is the geometrical symmetry in all other axis, right. So, I think we will going to 

discuss later on like, if we model if you if the body’s has a symmetricity then you do not 

need to model the whole thing. So, you can model the one part of it and then you can use 

the property of the symmetric property and you can get the all other things anyways. 

So, in case of a sphere only one fourth is good enough for modeling. Now, if I do that 

now, the idea is to tell you that here you can see this phi 1, like it is may not be visible 

properly, I just write 
1  this panel 

2  next panel and 
3  some panel is very away from 

this first two panel. And, you can see the 
4  is further away. So, here unlike the finite 

element where you need this matrix in a specific format here we really do not need that 

way, ok.  

And, if you remember the finite element is the-this is the diagonally dominant matrix, 

but here is a you know this matrix sparse matrix. I mean; that means, it has the value 

everywhere, right, its not diagonally dominant, ok. So, therefore, here it is not essential 

that you take all the panel in sequential order or some order not necessarily, ok. So, this 

is that actually makes your life little bit easier, why? Because, I will tell you that when 

you model it or you mesh it using some commercial software. 

Sometimes, it maintain, sometime it may not the maintain this the this orientation. So, 

absolutely there is no problem with this, ok. 
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And also, again the same thing that the panel you need to avoid, right. So, these are the 

panel that extremely bad aspect ratios panel you need to avoid or also you need to avoid 

that this angle is very high, right. So, it is a thumb rule, I do not say this is some theory 

associate with this, it is not.  

Of course, but, when you using some software like (Refer Time: 21:30) thermoses some 

other software, so that time you need to take care that your this aspect ratio, I mean you 

will get the better result, if this aspect ratios if you maintain 0.1 to 1 and for that and also 

for the quadrilateral panel this angle should be between 70 to 135 degree. I mean if you 

maintain this, then you know definitely this that what is said that quality of the result 

would be good.  

Like, it is very tough to tell that you know it there is a there is a many many 

dependencies like this numerical code, writing numerical code never be an easy task 

because, it is not all about the theory; it is all about that numerical I mean sometimes 

everything is correct, but you really do not understand, why it is not numerically stable. 

So, there will be many many reason.  

So, you have to be make sure that everywhere that you are at least you are following the 

basic thumb rule so that the core engine which is the writing the integral part, right. So, 

that does not take you know taken care of other thing like the normal is define the normal 

is fine. And, then this area is not very thin, aspect ratio is not that bad.  

372



So, that variation that you are what you are assuming that phi is constant for a one panel 

different for the different panel. Now, if these two panel is very large so, we can see that 

you know I will tell you that what I am what I mean like. 
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So, now, if the aspect ratio is bad, then you can assume that you know that now this is 

the two thing. Let us take these are the your panels. Now, here you have this let us say 

phi 1, let us say phi 2, then phi 3 and you have phi 4. Now, you see that phi 1 and phi 3 is 

very close by; however, phi 1, phi 2 is far away, because of your elongated panel.  

Now, compared to that, if you have this panel, right, some panel like this. And, then you 

can see that the distance from this and distance from this, I mean this neighboring 

distances are in kind of almost like a same order. Like this sort of things helps actually in 

your in your coding. So, that is why you need to take care about all these things, right, to 

do that, ok. 

So, I think today we are going to stop here at this point. And, then, we are going to set up 

the integral, I mean the conversion of the integral equation to the algebraic equation. 

How actually do with respect to this lower order panel method. Now, here it is not as 

same as before, I am not taking that one-point Gauss quadrature rule, we have to take 

either two-point Gauss quadrature rule or three-point Gauss quadrature rule, right. 
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And, what is that? And then, how I take care about the normals in very unified way? 

And, how I do a do the perform the integration over the panel? All such thing will be 

discuss in the future class. 
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Why, I am discussing all such thing that is one major reason is this computation of this 

Green’s function, ok. Now, here we definitely we are going to discuss later on you know, 

here that just for to realize you that how complex things are here. Here you can see there 

is a two component, one is 
1 1

r r



 the that is we can call the Rankine. And, when this i 

and j is very close to each other, that time finding out this Green’s function this Rankine 

part is very difficult.  

Now, this is one part; forget about this. Let us take the other part of it which is the 

regular part we can call. Then you can see here we can have in this equation now, you 

can see the integration is 0 to  . So that means, you understand that, if you look in this 

summation form. So, at that point that summation should be infinity. So, we have to go 

look for a you know the convergence solution, right; that means, if; that means, your 

numerical solution should be convergent, right.  

And, then, top of that so now, the integration limit is  . Top of that you have this all 

these Bessel function this first kind, second kind, modified Bessel function and all of 

these functions are also in infinite series as you know. So, now, you can see the 
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complexity of this particular thing. First of all, it is not only, that it is as a singularity, 

where i = j, at that particular point also, you have to you know formulate a - you need to 

compute a Green’s function, which the integration limit it is you know 0 to  , right. So, 

therefore, it must be I mean you have to look for the convergence, right. 

So, that is how that sometimes you can say that this results is not coming correctly, you 

can find out some numerically inconsistents result is coming, why it is so? Because, 

sometimes when you integrate this not necessarily that you are if you are not writing 

very tight code, ok. And like if you take care of all aspect of the meshing everything, 

then this might go infinity. So, then at that point you do not get the convergence solution. 

So, therefore, that is why that is the main reason I am keep telling that thing that you can 

actually these things is not in your hand it is the coding, the converge, non-converge, 

does not depend on then what is your source point? What is your field point? How are 

doing the integration? Many things and it is not possible for us to look at each aspect 

going through the code and make sure that things are going well. 

However, what we can control from the very beginning, that the basic things the basic 

geometric parameters if I set it correctly, like the meshing, the normal should be uniform, 

it should be the outward drawn normal or inward drawn normal, based on that you have 

to write the code, you have to; you have to adjust the sign minus, plus everything. If 

these things if you do correctly, definitely that there is a possibility that the - that you 

will get the better results at the end, ok. 

So, I think today let us stop at this point and in the next class, we are going to form the 

algebraic equation; that means, that we have this integral equation and then this integral 

equation, we are going to transfer into the algebraic equations and then we have to see 

that where we have the challenges. And then how numerically we sort out those 

challenges. And, finally, how I get this added mass damping exciting force etcetera, ok, 

we are going to discuss from the next class, ok, till this point. 

Thank you. 
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