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Hello, welcome to my Numerical Ship and Offshore Hydrodynamics. 

(Refer Slide Time: 00:17) 

 

So, today we are going to discuss the following things like, we are going to continue the 

Frequency Domain Panel Method and today we are going to discuss that how I can 

change the boundary value problem that general boundary value problem we have 

discussed in the last class.  

Today, for attack this problem particularly using this discretization technique that we 

have discussed in the last class that phi you know divided into three parts phi I plus, phi 

d plus summation i equal to 1 to 6 then, so all these things taking all everything together 

how to solve this that we are going to discuss and how I how the boundary value 

problem changes because of this that also we are going to discuss. And then, we are 

going to discuss something called the source panel method. 

Normally, you remember the last class, not last class the previous classes we have 

discussed the source dipole method; however, the classical software like Vermont and 
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other thing they prefer to use source panel method. So therefore, we are going to discuss 

on that also. 

(Refer Slide Time: 01:28) 

 

So, this is the keywords that you are going to use to get this lecture, ok. 

(Refer Slide Time: 01:34) 

 

So now, let us jump into this equation. Now, here you can see that phi that we discussed 

the summation of that I d   and then j = 1 to 6 j . Now, here the interesting part is I 

am going to do this for you know in complex domain. So of course, 
i te 

. 
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So, there is nothing new on this, but here you can see that I multiply  0 i d    and I 

multiply 
j  in front of the 

j . So then, it is very normal questions like, why these things 

comes here. Because, if you remember in my last class that what we discussed over there 

as follows. 

(Refer Slide Time: 02:36) 

 

So, we discussed that our  total the total   is equal to that we discuss it is I  and then, 

we discuss as d  and then, it is 
6

1

j

j




 . So, that is what we have discussed in the last 

class. So, however if you come back here; now I can see that it is there of course but with 

this 0  and j  is actually we are multiplying, right. So, what is the need for that? So, 

first let us understand these things, ok. 

Now here, now just in sake of you know convenience let us put some number to I and D 

also. So, normally what I do is we can write   equal to now instead of I we call as 7 , 

ok. And an instead of d  we call as 0  and then, I can add some j = 1 to 6 into j  ok or 

sometimes we can call this as 0 this as 7 does not matter. 

So finally, that I can write in summation form 
7

1

j

j

 


  equal to some j equal to you 

know 0 to 7 into some j . So in that way, actually this is how I can write in coding. So, 
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instead of I, we writing 
7  instead of D we can writing 

0 , but that is not the issue. The 

issue is that why I am multiplying this   with you know this 
I plus you know 

d  why I 

multiply this is something called 
0 . 

(Refer Slide Time: 04:26) 

 

And why I am multiplying this j equal to 1 to 6 in j  some xij. So, the question is this, 

right. Now, let us try to answer this question first. Now, what we do? Now if you look at 

this physical phenomena, what is happening. Now, I have a ship over here and then this 

incident wave potential actually hitting this object and because of you know this wave hit 

this ship, then we have some pressure variation along the hull, right. 

If we integrate the pressure you can get a force. Of course and the name of the force is 

exciting force and normally we define this as Fex. Now, if you know that this Fex this 

exciting force is summation of the force is equal to force we call is a Fk plus the 

diffraction force we call FD. Now, it is similar to if you remember in my previous class it 

is similar to that picture where it is this is still it is not moving; however, the wave is 

hitting to this object, right. 

Now, what is happening when this exciting force actually we apply over the ship? Then 

ship start oscillating. Now, when ship  start oscillating we can have different set of 

waves. What is that? 
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(Refer Slide Time: 06:28) 

 

Now, assume that initially this ship is very much statically stable weight is balanced by 

the buoyancy and everything is fine. Suddenly, you know this the ship hit is this I mean 

the wave hit the ship and then the ship start oscillating, right. So, actually this force why 

is called the exciting force because, this excite the ship to oscillate. Now, the moment the 

ship start oscillating, then again we have some different wave field altogether and these 

waves we can call as a radiated wave; and this problem we call the radiation problem, 

right.  

So, now, let us see the picture. The picture is that ship is very much stable here with 

there is no waves in and then suddenly the wave’s hits. So, that excite the ship and then, 

ship start oscillating and before ship start because of the ship start oscillating then we got 

some radiated wave and this is called the radiation problem.  

Now, because of this phenomena that ship is you know start oscillating and this is the; 

this is the picture that you refer for when the body we this start oscillating in calm water, 

right. This is the second picture if you remember and if you add these two picture you 

will get the original phenomena. So, we have actually this phenomena is splitted into two 

component, right. And because actually this happens this oscillates, because of this 

oscillates what is happening again we have some pressure field along this body. 

And then if you integrate the pressure field we will get you know the radiation force, 

now. Now, what is the connection between these two? The connection is this then that 
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this exciting force excite the body and because of this excitation. The ship start 

oscillating and because the ship start oscillating we can have some force. Now, the 

question is what would be the amplitude of that force? Right. Because, this is unknown 

to me. 

But, what is known to me. I know what is the wave height that actually hitting the body, 

right. Now, you know that you can so this is my input that   equal to some amplitude 

cosa let us say in real line cos( )kx t  if this is hitting and then, we know that 
I  the 

expression is also it is 
ag


 then in case of a deep water kze into let us say  sin kx t . 

So I know this, this is known to me, right. So, I know that what is the amplitude is hitting 

the this structure, but I really do not know. Because now, this the radiations if I try to 

write this the potential for the radiation potential this must be some amplitude let us call 

it 
r . So, let us call is eta r into a similar manner it should be some kze into either sin or 

cos  kx t definitely it is sin because, this phi R also has to satisfy the linear free 

surface boundary condition. 

So, if the eta equal to cos k x minus omega definitely phi should be sin whatever. So, let 

us leave that part. Question is, how do I know this amplitude this? Right. Now, here is 

the trick. We use the property of the linearity. You know it is a very nice property in fact 

from the class 9 we are doing this maybe you can maybe before that I do not remember 

right now but, the day you started the unitary method we are actually into the linearity. 
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Now, what you say is very simple. It says that let us say that let us take 1 apple if it is 

cost let us say rupees 20 let us say then, in 200 rupees in rupees 200 I know how many 

apple you could buy. So, you know that it you know so, it is very easy for this is very 

simple because, I know that price for 1 apple. So, it is simply 200 divided by 20. So, this 

is my answer. 

So that means, this unitary method you know teach you if everything is under the 

linearity and if you know the cost for unit then, then you can find out the total thing that 

you are spending, right. So, this teach you that the total cost so under the linearity. It 

teach you this 200 is equivalent to some amplitude eta multiplied by the 20. That means, 

I know the price for a unit apple and then I multiply by the you know in that case the 

number of apple in our case is the basically the amplitude that mode the mod. 

If you so, the underlying principle of the linearity is as follows that, if you know the 

thing for the unit amplitude and if you multiply this unit amplitude with the modulus 

then definitely you are going to get the total force. So, this is the idea, ok. So, see you 

understand and it is only possible in the approximation of the linearity. Because, linearity 

you know gives you a nice property right and it is called the - this is the ratio and 

proportional. So, it means that if 1 this cost 20.  

So, definitely this much so it is 10 this will definitely cost you 200. So, this by this 

should be equal to this by this. So, this is what we learned unitary method so, this same 
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logic actually in applying here also. So, let us see how we are applying this principle 

here. So, again let us go back to the slide. Now, if you look at this slide, here now I 

understand that if you look at this part. If you look at this part this is now I understand 

this psi I plus psi d is nothing but the thus the velocity potential for unit amplitude wave, 

ok. So, let us so here. 

(Refer Slide Time: 14:58) 

 

So now, we understand in that slide, in that slide this i D   is nothing but velocity 

potential for unit amplitude wave. So, if it is so then if you multiply the wave amplitude 

o . So, definitely you know with this same linearity analogy I can say that this is nothing 

but the you know that you know the force I am getting is basically the velocity potential 

for our problem. 

Similarly, if we look at this the right hand side; now here I have the j , right. So now, 

this j  is nothing but now this j  is nothing but the velocity potential for unit amplitude 

motion. You know that this for radiation probably in steeled water this body has to 

oscillate. Now, that magnitude of this oscillation is 1, then it is j . 

Now, if you multiply this j  as I said the similarly that the remember this 2nt  multiplied 

by some   or   this equals to 200. So therefore, this j  must be multiplied by the 

amplitude to get the total velocity potential so, right. So, I am writing here that so 
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therefore, I can write my 
i  is nothing but 

0 0.  , where 
0  is the velocity potential for 

unit amplitude wave. 

Similarly, my 
d  is nothing but 

0. D  , right. Where the 
D  is the velocity potential for 

the unit I mean diffracted potential for the unit amplitude wave. And similarly, I can 

write my radiation potential 
r  in jth mode is equals to that .j j  where 

j  is nothing 

but the radiation potential for unit amplitude motion, ok. So, with this understanding let 

us go back to this slide, ok. 

So now, you can see that now this equation seven is absolutely clear to you right ; it is 

nothing but the I mean  0 i D   and  = j . Now, here what I am going to do is as I 

said in the last class that each of this   should satisfy the Laplace equation. So,   satisfy 

the Laplace equation so, definitely this j  also satisfy the Laplace equation. Now, 

since ( , ) 0x i j  the other part should be 0. 

So therefore, 2  must be equal to 0 right and that is my governing equation. Now, if I 

know my governing equation then, then you can see the equation number 9 which is 

nothing but the free I mean combination of kinematic free surface condition or dynamic 

and dynamic free surface condition, right. So, how it is coming now let us see that how 

this second equation has come this is also very easy. 

(Refer Slide Time: 19:19) 
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Now, here you can you can you can write that you know that in time domain it is  

0tt zg    that is in the time domain case. And so therefore, if you take . i te    now 

if you so, if you differentiate this two time. So, 
tt  is nothing but 2 i te    and of course 

that 
z  is nothing but . i te  . 

Now, if you substitute over here what you get is minus omega square into 

2 0zg      and then it is nothing but 
2

0z

g
 


  , right. So, this is the alternative 

expression for  . So, you can see it is here, ok. Now, I did here the opposite it is I just 

divided g right that does not matter. And then, we need to again understand what is the 

third equation which is i n  I mean, why it is this let us we need to understand that also.  

I mean that equation number 10 for j = 1 to 3 for j = 4, 5, 6 the boundary condition. Now, 

here, ok. So, in this slide actually we did the indexing is the opposite does not matter ok 

like, but let us see that where the indexing here is here. 

(Refer Slide Time: 21:20) 

 

We can we use that   I is equal to we can call this as a 0  and then the d  we call as let 

us say 7, ok. So, let us take this ok and of course the radiation potential definite it is j 

equal to; j = 1 to 6 into  j. So, let us go with this notation fine. Now, if you remember 

that from j = 1 to 6 is the boundary condition for radiation problem, ok. And then, from 
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 j = 7 this is the boundary condition for the diffraction problem, ok.  

Now, let us try to understand what is the condition for the radiation problem? ok. Now, if 

you remember the radiation problem is nothing but there is a calm water and then the 

body is oscillating and then, you can have some radiated wave and you have a pressure 

field if you integrate it you will get the radiation force. 

Now, here if you remember I said that   represent for the velocity  R or I can just if I 

make index j. So, radiation potential for the jth mode is nothing but I oscillate the body in 

unit amplitude motion. So, I am giving here the oscillation of this body. So, I oscillate 

this with unit amplitude of the motion. So, definitely my oscillation this x is nothing but 

. i ti e  , right. 

So therefore, my velocity x dot should be . i ti e  right, fine. So now, if you remember my 

radiation condition is nothing but that is j

j

Vn
n





 mode, right. Now, this 

n




 is nothing 

but  .nj  mode should be is equal to . jV n  mode. So, this is quite simple that we 

understand this, right. 

(Refer Slide Time: 24:27) 

 

So therefore, my velocity I mean that body boundary condition from the left hand side it 

is nothing but my 
n




right that is in the jth mode of course, that should be equals so 
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now, now what is my Vn it is nothing but Vn. Now, I just find out my .V x i  . So 

therefore, I replace this, equal to 
ni ; whether it is not

n .  

So, just careful it is 
ni  or you can say n j or the jth direction right, fine. And so, it is and 

it is happened for j = 1, 2 and 3, right. So, then that means, if it is j = 1 it is nothing but 

your nx if it is for j = 1 for j = 2 it is ny and j = 3 it is nz fine. So, similarly I know that 

other part also you know nj  it is definitely we can call r n or here it in slide is called 

x n  it does not matter and it should be j-3. Now, we discussed already what is this. 

Because, how I get it, it is also very easy it is if I take i.j.k and then, let us call this r.  

So, you have three component rx ry rz and then, you have component nx ny nz and if you 

do that then you have some ith component, then you have some jth component and you 

have some kth component. So, here for del 
4n

 
 
 

should be v is i  right multiplied by 

the first component of this. So, definitely it is n so, j = 4 - 3. So, it is nothing but i  you 

know it is the n the first component of this the matrix the ith component.  

So, that is why I write this as that is why you can in common you can write del 
n

 
 
 

 at 

jth mode should be ( )i r n   into the not nice it is this 3( ) jr n  , right. So, this is all about 

of the radiation potential. Now, only thing is let what happened for the diffraction 

problem.  
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Now, in diffraction problem if you remember that what I said is that this - the body is 

fixed and then wave is hitting over here, but body does not move. If the body does not 

move, then .V n = 0 and then the exciting force as I know is the combination of the 

I d  . 

So therefore, the boundary condition become  r D

n
 





 that should be equal to 0. So 

therefore, del 
D

n




 should be equal to I

n





. Now, if you remember this I notation this 

as  0 and this I noted as  7. So, then I can write 
n




 in 7th mode should be equal to 

minus of 
n




 in the 0th mode, 

7 0n n

     
    

    
, right.  

So, let us go back here and you can see that this is the boundary condition for our 

problem. So now, we understand this boundary conditions now and then, from the next 

class from next class actually I am going to discuss about the source panel method, ok. 

So, till this point. 

Thank you. 
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