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Hello, welcome to Numerical Ship and Offshore Hydrodynamic course. Today is the 

lecture 10 and today we are going to discuss we are continue to discussing the basic 

Hydrodynamics ok and this is the keywords that we are going to get to find out this 

lecture. 
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Now, in last class we have discussed about the boundary value problem that we are 

going to establish using the Laplace equation and some boundary conditions and from 

where how I get the pressure. 

(Refer Slide Time: 00:34) 

 

Now, let us take for a simple problem the solution also very simple ok. So, let us try one 

solution. Now, let us try to solve this Laplace equation ok, with this boundary conditions 

you can see that here the boundary conditions are not very complicated right. 
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Now, let us take this is your rectangular domain and this is your boundary conditions and 

your governing equation is basically the Laplace equation that is we are going to solve. 

Now, how to attack this problem ok. 

(Refer Slide Time: 01:38) 

 

So, let us see for this sort of problem many analytic solution exist ok. Now, assume that 

your ϕ is you know with this is called the separation of variable, this ϕ is function of x 

and y is a two dimensional problem and I separate this solution in X which is only the 

function of x and then Y is the only the function of y. 

Now, if you substitute this in Laplace equation then then this will get this X''×Y + Y''×X. 

Now, if I rearrange this then we can get that X''/X, Y''/Y = - k2. Now, here the tricky part 

is it should be + k2 or – k2. To see that if I go back here, I can see that horizontal 

direction is my X and then vertical direction is my Y. 

So, I really do not need the sinusoidal solution in the direction of Y. So, therefore, you 

know that is how I can fix my k size is – k2 Y. So, that you can get here two ordinary 

differential equation. One is X'' + k2 X = 0 and second one is you know Y'' - k2 Y = 0. 

Now, here it is very well known that solution is basically a solution for this problem is 

harmonic and it is parabolic right. So, I can write the solution for X is C1 cos(kx) + C2 

sin(kx) and direction of Y is D1 cosh(kx) + D2 sinh(kx). So, now, why it is that is why I 

see that this taking the k is you know typically based on the fact that I need the 
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sinusoidal solution in the direction of X and I need that other solution is the direction of 

Y because Y D is not created in direction of Y it is only propagating in the horizontal 

direction right. 

And, then you know that your solution is very simple ϕ(x,y) = X(x) × Y(y). So, now, you 

substitute everything in this equation. So, this is basically your solution. Now, this C1 C2 

D1 D2 is your constant and you have to find out this constant from your boundary 

conditions right. 

(Refer Slide Time: 04:14) 

 

So, what we get overall? Now as long as this f(x) is simple function, the solution of the 

Laplace equation is easy; however, the solution is extremely difficult. If f(x) is a 

complicated function, now in context of our problem this f(x), I mean it is in first of all it 

is not the f(x) it should be f(x,t) because the wave is function of time as well as the 

function of space and this is complicated. 

So, therefore, you know such simple solution might not be useful when you solve 

typically a hydrodynamic problem that ship is moving in ocean and then then under the 

waves condition. Such a simple solution you know not possible right. So, that is why 

although the solution of Laplace equation is not that difficult you know that you can get 

it from here it is simple this separation of variable will do; however, because of this 

complex you know the boundaries right typical see hydrodynamics problem is not as 

simple as solving a Laplace equation with simplified boundary conditions right. 
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Now, I actually I am leaving one homework for you let us I mean just try to solve this. 

Next we are going to move that why I say it is complicated ok. Now, try to find out that 

what is the equation and what is the boundary condition in case of a ship hydrodynamics. 

Now, we have this assumption that fluid is incompressible fluid is inviscid fluid is 

homogeneous and the fluid is rotational right. Now, when we assume the fluid is inviscid 

then there I mean or the irrotational everything.  

So, then we can define a velocity potential ϕwhich is the Laplace equation right ok. So, 

this Laplace equation we are going to take our governing equation is simple because in 

the last class also we have discussed the same; here also we are discussing the same. 

Now, let us see that what is the boundary condition. 

142



(Refer Slide Time: 06:44) 

 

Now, you can see this blue region is basically the fluid region where this ∇2 ϕ = 0 exist 

right. The mass converse and then let us see the boundaries you can see here you have 

this I just make this boundary as a you know the black lines right. Now, let us find out 

that what are those boundaries. Now, this bottom part you can just see bottom we can 

call the bottom boundary surface or here we can apply the bottom boundary conditions.  

Now, you can see these two part actually you can call a radiated, radiation condition 

applied because it is we can say it is a far field because we can assume the ocean if you 

look at this horizontal direction it is infinity. Then what happen to the far field that is 

also we need to apply some condition we called the radiation condition, and then this we 

can call this as a non-linear free surface boundary condition why? 

Because I am assuming now this is the boundary of I mean we can call it is a free surface 

because this is the boundary we are having the air and then water, and here you 

remember this is the second interesting thing that actually we are different from any or 

any other field in case of mechanical we really do not deal with the free surface. 

In fact, in aerospace also we do not deal with the free surface only; only in our case when 

you do the you know ship waves interaction right, in this particular free structure 

interaction we have to deal with the free surface which is the surface in the top side is air 

and the bottom side is water right. You think that in aerodynamics you really do not have 

these cases right in mechanical you do not have these cases right. 
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Typically for offshore structure for civil engineers they are encountering this problem 

and also we are. Now, why I call this is a non-linear free surface because this wave is 

non-linear in nature right; however, we can make you know little bit approximation and 

what are the approximation definitely we are going to discuss in coming classes, and we 

can approximate this non-linear free surface to the linear free surface boundary 

condition, that what is this condition, and what is non-linear free surface condition, what 

is linear free surface condition, definitely we are going to discuss in future classes. 

And, one more very important boundary condition we have not yet discussed which is 

called the body boundary condition. Now, what is the body boundary condition body 

boundary condition says that under this waves when the waves hitting the structure you 

know you can see my initial days this first class I think I showed that video when this 

body start oscillating and because body start oscillating with there is some kind of waves 

is generated and also when the incident wave or the ocean waves hit the structure, the 

structure also start oscillating. 

Then what are the kinematics is there, what is the condition. So, that condition is known 

as body boundary condition. Now, you know the condition is very easy like you know 

what is the condition that body remain on the ocean. If you think you know what is the 

condition that body cannot leave the ocean what is the condition. 

Now, you see here I just show from here that it is the pain and this my hand is with me. 

Now, now suppose if I you know move my hand up and down then what is the condition 

then pain also remain here. The condition is the normal velocity of my hand should be 

equal to the normal velocity of the pain right, if that velocity is different and let us see 

what is happening. 

Now, let us see the velocity of the pain and velocity of my hand has different velocity 

with different normal velocity then what happened, let us say the velocity of normal 

velocity of the pain is more than the normal velocity of the hand. Then, what is 

happening then you can see that my pain is coming out of my hand right. 

So, ship really cannot go air right it is not like a ping pong ball it is going up and down I 

mean that is we are going to play in when you go to the beach you play with the ball 

right, it is ship is not like this. So, it means that normal velocity of the water particle 
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associate with the means you know touched with the ship both are having the same 

velocity and that condition we called the body boundary condition ok. 

And finally, we have the initial condition initial condition is basically where there is no 

waves. So, at time t = 0. We assume there is no disturbance then ship is very much you 

know happy with in the static condition then weight is balanced by the buoyancy. So, 

that condition is called the initial condition ok. Now, before I move into the next topic 

some geometric understand let us try to understand ok. 

(Refer Slide Time: 12:33) 

 

Now, if you know that this is the well known when this dϕ = (ꝺϕ/ꝺx).dx + (ꝺϕ/ꝺy).dy + 

(ꝺϕ/ꝺz).dz like, if ϕ is a perfect differential then you know this is the condition and of 

course, like from mathematics if you have studied mathematic little bit. So, we can find 

out that velocity potential is a perfect differential ok. 

Now, if it is so, then what is dϕ/dn. So, here we can see it is I can write in this form 

dϕ/dn = (ꝺϕ/ꝺx).(dx/dn) + (ꝺϕ/ꝺy).(dy/dn) and (ꝺϕ/ꝺz).(dz/dn). Now, if it is so then 

actually what we could do is I can write this in a vector form. How? Now, we can see 

that in the next slide we can see that I can write (ꝺϕ/ꝺx) as i (ꝺϕ/ꝺx) because this is the 

component along the x direction then j (ꝺϕ/ꝺx) and then k (ꝺϕ/ꝺz). 

So, I can write in vector form right because (ꝺϕ/ꝺx) is the direction of i, (ꝺϕ/ꝺy) is the 

direction of j, and (ꝺϕ/ꝺz), is the direction of k, and similarly I can write the (ꝺx/ꝺn) is = 
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nx and (ꝺy/ꝺn) = ny and (ꝺz/ꝺn) = nz. So, that is also I can write in a vector from nx in the 

ith component, ny in the zth component, and then nz is the kth component. 

So, if it is so, basically that (ꝺϕ/ꝺn)  is nothing but the (∇ϕ).n. So, this is also you know 

from the vector understanding of the vector also we can get this like velocity or a.b 

means what the component of a along b right. So, in similar way (∇ϕ).n is basically the 

component of the velocity in the normal direction right. 

So, now on when I say the component of the velocity in some direction or in the normal 

direction, normally you are going to use (∇ϕ).n. So, it is understand that component of 

the velocity along the direction of n ok. So, this is one thing that you have to understand 

I mean I know that you know all these things known to you, but still I just discussed this 

ok. So, that is what I said the fluid velocity normal to the surface. 

(Refer Slide Time: 15:34) 

 

Next one, suppose some more basic understanding suppose a surface ϕ. So, ϕ is a surface 

(x, y, z) = 0. Assume, that this is the surface. In fact, you can add t also over here that 

ϕ(x, y, z, t) = 0 ok, I mean reality that is what the case ok. Now, if it is so, then dϕ/dt = I 

can again in similar line I can write it is ꝺϕ/ꝺx × dx/dt + ꝺϕ/ꝺy × dy/dt + ꝺϕ/ꝺz × dz 

because I know that dϕ = ꝺϕ/ꝺx dx + ꝺϕ/ꝺy dy + ꝺϕ/ꝺz dz right, so, this one. 
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So, in similar line I instead of n I just use the divide it. Now, again I can write in vector 

form vector dot product as follows like dϕ/dt = i ꝺϕ/ꝺx + j ꝺϕ/ꝺy + k ꝺϕ/ꝺy and then this 

dx/dt I can write as a x dy/dt I can write as a y. and dz/dt I can write as a z . right. 

Now, you see what is this the left hand side is nothing but the ∇ϕ and the right hand side 

is nothing but the velocity which is r  So, I understand that dϕ/dt is nothing but ∇ ϕ . r  

So, now, r is the velocity. So, what is the meaning is that velocity along the tangential 

direction right. Now, if you look at the first line when I say that ϕ(x, y, z) = 0 you can 

write ϕ(x, y, z, t) = 0 ok, I mean ϕ can be function of t also and if it is so, then dϕ/dt 

definitely going to be 0. 

So, in the left hand side I called dϕ/dt = 0 right. So, here that dϕ/dt = 0 we know. So, 

therefore, I can see that ∇ϕ.r  = 0. Now, you see from the vector what we get from here it 

mean that gradient ∇ ϕ is a vector and r is a velocity vector their product is 0. So, 

therefore, ∇ ϕ definitely perpendicular to the r . right. So, this is the take. 

So, I understand that ∇ ϕ is perpendicular to the r. So, if it is so, we can see here suppose 

ϕ(x, y, z) = 0 if this is the surface then definitely I can say that ∇ ϕ is perpendicular and 

also ∇ ϕ is the normal to that surface and therefore, I can say that the surface normal n 

can be defined as ∇ ϕ divided by modulus of ∇ ϕ ok fine. 

So, these two geometric understanding if we have and then we can actually try to you 

know find out what is the kinematic body boundary condition. 
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And, this is very important concept in our numerical ship hydrodynamic it is not 

numerical ship hydrodynamic, it is this is the you know if you consider wave dynamics 

then also understanding this kinetic boundary condition is very important. Now, here 

what is we can see here like this F(x, y, z, t)  is basically the similar to my ϕ here ϕ(x, y, 

z) =0. So, instead of ϕ I am writing that F(x, y, z, t)  = 0. Now, this is basically the 

surface.  

So, this basically this surface I can call that equation is F(x, y, z, t)  right and then this 

surface has a velocity V let us assume this surface has a velocity V ok. At some point of 

time here, at some point of time. So, this is the direction of the normal n. Now, this white 

one is nothing but the fluid particle. Now, assume that this fluid particle also having a 

velocity q ok. So, and also this also you can see this q = nothing but gradient of ϕ ok 

under this all these condition that we have discussed. 

Now, what is the condition that this fluid particle will stay here with the in the boundary 

surface f. So, this question is very clear that what is the condition that this fluid particle 

stay here. So, this fluid particle is not coming out of this boundary surface a what is the 

condition. So, we discussed just right now like that how this pain is sticking with my 

hand. The idea is basically the normal velocity; the normal velocity should be of the 

boundary surface should be equal to the normal velocity of the particles right. 
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So, this is what actually discussed you know a few moments back when I say that pain 

should stick on my hand, if the velocity of my hand the normal velocity of my hand 

equal to the normal velocity of the pain right. The similar argument here I am just 

writing this this picture over here. So, this is the point P and here you have this q is the 

velocity of the fluid particle V is the velocity of the surface. 

So, therefore, at this particular point the normal velocity of the boundary surface should 

be equal to the normal velocity of the velocity particle right. So, this is clear, now if it is 

clear then rest part is basically algebra ok just clear this yeah ok. 

(Refer Slide Time: 22:41) 

 

Now, if this is clear the remaining part basically the algebra. Now, again before we really 

try to solve this problem let us do one more thing ok. Now, this is we are writing that 

F(x, y, z, t)  = 0 or just you can write that sake of writing little bit smartly that x y z we 

write in terms of r ok fine. Now, if it is so and then actually I just do a Taylor series 

expansion.  

Now, I am just try to find out what happened with F (r + δ r, t + δ t) ok. Now, here this F 

of r + δ r if I use the Taylor series expansion it becomes F (r, t) + δ r × ∇ (r, t) + δ t 

(ꝺF/ꝺt). So, this is a; this is a very standard this is very standard right this is very 

standard. Now, here this part goes to 0 right. Now, if this part goes to 0 and then we can 

write that δ r × ∇ F = minus δ t (ꝺ F / ꝺ t). So, then if I divide it the throughout the δ t.  
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So, I get (δ r / δ t) ∇ F = minus ꝺ F ꝺ t and if it is so we can find out that you know V dot 

∇ F = minus ꝺ F ꝺ t. So, now let us understand this concept ok. So, this is something 

actually we are going to use to find out the kinematic body boundary condition.  

Now, you see at P as I said V. n is = q. n right. So, normal velocity of the boundary 

surface should be equal to normal velocity of the water particle and also I know that n is 

nothing but ∇ F by modulus of ∇ F that is also we know. So, therefore, I can replace V = 

∇ F by modulus of ∇ F = q . ∇ F by modulus of ∇ n right. 

And, then we have V . ∇ F = q . ∇ F fine, because this modulus of ∇ V is nothing but a 

scalar term and both side will be cancelled out. Now, from here; now from here we are 

actually using this result that V dot ∇ F actually I am going to replace this V . ∇ F ok. 

Why? Let see that what we get if I do this. 

Now, once I do that ok let me take this somewhere else. Now here you can see that this 

V . ∇ F. Now, actually I replaced by minus ꝺ F / ꝺ t. So, what we achieve by doing this, if 

I do that finally, we will get this equation that ꝺ F ꝺ t + q dot ∇ F = 0 at P and this is very 

well known and everybody knows what is this equation right, this equation is very very 

well known to everybody and this equation is nothing but the material derivative = 0. 

Now, this is the kinematic body boundary condition. Now, we said if F is the boundary 

surface then that the water particle should be sticking to that surface if and only if the 

material derivative DF/Dt = 0 ok. So, with this understanding let us stop today ok and in 

the next class we are going to discuss the more concept on the hydrodynamics. 

Thank you very much. 
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