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Welcome to the 5th lecture of the course Marine Propulsion today we will be continuing 

with Propeller Theory. 

(Refer Slide Time: 00:34) 

 

So, the key concepts discussed in today’s class will be thrust loading coefficient from the 

context of propeller momentum theory and we will also do some problems based on 

momentum theory. 
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So, let us continue with the equations that we have derived for axial momentum theory 

of propellers. 

So, I am just showing the domain here we had the inlet velocity because instead of the 

propeller moving ahead with a velocity V we had defined the actuated disc facing a 

velocity V at the inlet and the disc is fixed at a particular position. So, this was far ahead 

and far behind the pressure is same in these two conditions and we have the axial 

induced velocity UA which adds up to the inlet velocity. 

And at the propeller plane so, the propeller is simulated with an actuated disc which 

imparts axial momentum to the flow here the velocity is VP at the propeller plane and 

there is a pressure jump from P1 to P2 across the propeller disc. So, the key equations that 

we have derived in the last class where VP was equal to (V + UA/2) where UA is the total 

axial induced velocity next thrust is given by ρ×area(AP) of the disc × the velocity at the 

disc(VP) ×U A right. 

Where area is the disc area (πD2/4) where D is the diameter of the disc diameter of 

momentum disc. Now next what we will do is we have also derived the ideal efficiency 

of the momentum disc system and it was 2/[2 + UA/V]. Next we will define the term 

thrust loading coefficient in the context of the axial momentum theory. 



So, this coefficient is basically non-dimensionalizing the thrust generated by the disc 

with respect to the parameter 1/2 ρ×A×D2×V2. So, thrust loading coefficient which we 

call as CTL is basically the thrust generated by 1/2 ρ×AP×V2. So, here V is the reference 

velocity which we will use to define different parameters of the axial momentum theory. 

So, for the thrust loading coefficient we use it to non-dimensionalize the thrust and we 

will relate it to the ideal efficiency in this particular calculation. So, what is T? T will be 

ρ×AP×VP×UA right and in the denominator we have 1/2 ρ×AP×V2 right. So, ρ×AP cancels 

out. So, what is VP? VP is (V +UA/2) ×UA and we have 1/2×V2 right. 

So, now CTL becomes (2 × (V +UA/2) ×UA)/V2 ok. We can rearrange these terms and 

write it as UA/V and take the 2 inside the bracket (2 + UA/V) ok. So, this becomes our 4 

in this way what we have done is we have expressed C TL as a non dimensional velocity 

equation.  

So, we have UA and V where UA is the axial induced velocity and V is the velocity at 

which the momentum disc is advancing in the fluid. So, given that ratio we will be able 

to calculate through the thrust loading coefficient. Now how do we relate this to the ideal 

efficiency? This is very important in the context of understanding the efficiency of a 

propulsion system. 
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So, if we expand this equation CTL becomes [(UA/V)2 + 2 UA/V] right. Now, we can 

write it as a quadratic equation [(UA/V)2 + 2 UA/V] - CTL=0, which is basically of the 

form A x2 + B x + C = 0 where the variable we can calculate x here, which is UA/V. 

So, what we do here is we apply the Sridharacharya method and calculate UA/ V as - b 

which is 2 ± root over of (b2- 4 ac). So, CTL is basically -c. So, plus 4 CTL, and a which is 

one here  by 2 right. So, this becomes  -1 ± root over(1+CTL). So, 4 comes outside the 

root and divided by 2 it is 1 right (1+CTL). 

Now, when we have a velocity V at which the momentum disc is advancing forward the 

induced velocity UA induced by that disc has to be in the same direction as V. So, UA by 

V is definitely positive. So, we will take only the positive root here UA/V will be root 

over of (1+CTL) -1 right. So, for all positive values of thrust loading coefficient you will 

have UA/V will be positive here ok. Now how do we write ηi? 

(Refer Slide Time: 09:45) 

 

The ideal efficiency ηi was 2 /( 2 +UA/V) right and from the previous page we see that 

UA/V is root over (1+CTL) -1. So, we can write it as 2 / (2 +root over (1+CTL) -1). So, 

your ideal efficiency becomes 2/ (1 + root over (1+CTL)) this is a very important result 

from the context of axial momentum theory of propellers which relates the ideal 

efficiency to the thrust loading coefficient. 



Now what does it imply? If you want to get an ideal efficiency of 1 let us say. So, what 

will be the value of the thrust loading? For any value when CTL is greater than 0 let us 

say for any positive value of thrust loading coefficient what will happen to this 

denominator? 1 + root over CTL will be greater than 1. So, ηi will be 2 by something 

which is greater than 2. So, ηi will be less than 1 ok. 

So, the only condition where we can get an ideal efficiency of 1 is the case where CTL is 

0 then only from this equation we will have the ideal efficiency equal to 1. Now what 

does it imply? If CTL is 0; CTL is defined by thrust(T) /[1/2 ρ AP V2] right. So, if CTL is 0 

then thrust has to be 0; that means, the momentum disc is not generating any thrust. 

So, if it does not generate any thrust then there is no point in the calculation of efficiency 

here ok. So, for any practical value where the momentum disc is generating a finite value 

of thrust we will have the ideal efficiency of this system less than 1 ok. So, another 

important thing should be mentioned here is this is a very simplified assumption that in 

this axial momentum theory the propeller is or the disc is not imparting any rotation to 

the flow. 

Now, what happens if we consider a rotation in the flow? If we do that then the ideal 

efficiency will be slightly reduced by another fraction which will come from the 

rotational value. So, here we have the ideal efficiency given by 1 /1 + a if you remember 

where a is the ratio of the axial induced velocity at the propeller disc. 

So, this was basically 1 by 1 plus UA/2V which is the ratio UA/2V. So, similarly we can 

define another ratio if we take care of the rotation ok then we will see that it will come to 

another value (1 – a’)/(1 + a). similarly where a’ will be the rotational component 

induced at the propeller plane divided by the rotational speed of the momentum disc (i.e., 

a’=(ω’/ω) and a here we already know a = UA /(2V) ok. 

So, if we consider both the axial and rotational induced velocities, ηi will be reduced 

further; that means, both the numerator here will be lower and we have a already higher 

denominator due to the effect of the axial induced velocity. So, this here the numerator is 

the rotational component (1-a’) and the denominator is due to the axial component (1+a) 

of the induced velocity ok. 



(Refer Slide Time: 14:44) 

 

So, let us try to look into very simple problems, which we can do applying axial 

momentum theory ok. Suppose in this particular problem you are given a propeller of 

diameter d which produces a thrust T when advancing at a velocity or speed V ok. 

Calculate the different components like power velocities in slip stream at a section far 

astern; that means, far behind thrust loading coefficient and ideal efficiency. 
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So, in this given problem the diameter of the momentum disc is given which is 

representing our propeller. 



So, D is given which gives us the area of the disc or propeller we can say is πD2/4. Next 

the thrust generated is given and the velocity of advance V is given these are the input 

parameters the parameters to be computed. So, I write to calculate are power delivered to 

the propeller velocity far astern which is V + UA the axial induced velocity the thrust 

loading coefficient(CTL) and the ideal efficiency ηi 

We start with the given value of thrust and the equation for thrust with respect to the 

velocity components is given by T = ρAPVP×UA where UA is the axial induced velocity 

and VP is the velocity at the propeller which is the velocity of advance or the inlet 

velocity plus half of the induced velocity far astern right. So, we can write this as T is 

ρAP(V + UA/2)×UA. Now in this particular equation thrust is known and on the right 

hand side all the terms except UA are known. 

So, when we put the values we will have a quadratic equation with UA as the unknown 

and we can solve for UA. So, this gives the value of UA from this we can now get V +U A 

as the velocity far astern because V was already known. So, this solves one part of the 

problem next ηi is given by 1 /(1 + a) where a is the fraction given by UA/2V which is 

UA/2 the axial induced velocity at the propeller plane divided by the advanced velocity 

V. 

Now, once we have computed UA we can calculate this fraction a and this gives us the 

value of ηi so, this part is done. Next we can compute power delivered or power PD; 

however, we may write now here as thrust (T) × velocity(V) divided by ηi we can use the 

output power which is thrust into velocity divided by the efficiency to get the power 

which is delivered to the propeller. So, this the same as PD which is mentioned here. 

We know all these terms T ×V and ηi. So, PD can be calculated and finally, the thrust 

loading coefficient CTH can be computed as T /[1/2 ρ APV2] in this way all the terms can 

be calculated for this problem. Now the same problem can be given in a slightly different 

way where instead of this thrust value the any of the velocity component can be given for 

example, either UA or the total velocity far astern may be given. 

So, we can use the same set of parameters to calculate the value of VP right. So, for 

example, if V + UA is given we can calculate (VP/V+UA/2) from the value of total V +UA 

we can calculate only UA and then we can calculate the value of VP from that and we can 

use this value to calculate the thrust, which is unknown if the problem is given in that 



way. So, in this way we can use simple momentum theory calculations to do basic 

powering estimate for a momentum disc where only the axial induced velocity is 

considered. 
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Another very important aspect of this momentum theory is the relation between the ideal 

efficiency and the thrust loading coefficient. So, as the thrust loading coefficient CTH 

increases the ideal efficiency of the propeller or the momentum disc here will decrease. 

And only for the condition where this CTH is equal to 0 then the momentum disc will 

have an efficiency of 1; that means, when the disk is not producing thrust at all that 

condition only will lead to an efficiency of 1.  

So, for any practical condition where a finite thrust is being generated there is a value of 

efficiency which will be less than 1. So, if this thrust loading coefficient increases the 

ideal efficiency will decrease on the other hand if CTH decreases the ideal efficiency can 

be increased. Now this has a simple practical implication for example, if we have a 

propeller of higher diameter as compared to another propeller which has a lower 

diameter, then for the same thrust output the propeller having the higher diameter can 

operate at a higher efficiency.  

So, CTH is basically T / (1/2 ρAP×V2). So, if the propeller diameter is higher then AP will 

be greater right if AP is greater for a propeller of higher diameter it will lead to a lower 

value of CTH that will lower the thrust loading coefficient. And if the thrust loading 



coefficient is lowered the efficiency will be higher that is why it is preferable to have a 

propeller of higher diameter to obtain a higher efficiency. If all the other geometrical 

aspects are similar. 

(Refer Slide Time: 22:58) 

 

Another problem which is slightly different is like this you have to calculate the thrust 

generated by a propeller ok where the diameter is given and it absorbs a power (P) 

without any forward speed using the axial momentum theory ok. So, basically the input 

power is given or thrust may also be given whatever any one of them can be input and 

another one you may be asked to calculate and we are having a propeller of diameter (D) 

and we would want to calculate at the condition where the forward speed is basically 0.  

This condition is very special for ships because later when we discuss propeller in open 

water condition we will see that this is called the bollard pool condition where the 

forward speed of the ship is 0 and we have the propeller working in a static condition and 

we would want to know the characteristics of the propeller ok. So, using axial 

momentum theory how can we do that this is the next calculation example. 
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Now let us say we have the forward velocity V is approaching 0 we take a limiting 

condition where V is approaching 0. Now what is the power delivered = T×V /ηi. Now, if 

we write this ηi as a function of CTL the thrust loading coefficient what will it be? It is 2 

/(1 + root over(1 + CTL) ok.  

So, the delivered power can be calculated as [T×V ×(1 + root over(1 + CTL)]/2. Now 

when the velocity the forward speed of the propeller in this case the momentum disc is 0 

what happens to the thrust loading coefficient CTL is given by T /(1/2 ρ×AP×V2) right. 



So, when the velocity V is approaching 0, CTL will be extremely high right at velocities 

close to 0. So, in those conditions we can write that as V is approaching 0, (1 + root 

over(1 + CTL)) will approach root over CTL. This is a small trick we need to do to cancel 

out the velocity components so, that we will be able to relate the thrust to the delivered 

power ok. So, we write the same equation we delivered will be [T ×V ×root over CTL]/2 

ok. Now if we take square power delivered square (PD)2 will be (T2 V2/4) ×CTL.  

Now what is CTL? CTL is T /(1/2 ρ×AP×V2). The V2 term can be cancelled out so, that we 

can get this equation power delivered square is T2 ×T = T3/(4 /2) is 2; ρ AP; AP is the 

Area of the momentum disc here (T3/2ρAP). So, we can use this equation simply to relate 

the power to the thrust. The delivered power to the thrust can be related using this 

equation where we have the forward velocity approaching 0 using the axial momentum 

theory ok. So, in this condition if the thrust is given we can calculate the power and vice 

versa ok. 

So, these are some simple problems we can do using axial momentum theory and this 

gives a basic idea of thrust loading and other efficiency calculations that can be easily 

performed using axial momentum theory, which is a very simplified theory, but it gives 

some understanding of the efficiency that a propulsion system can have at a given 

conditions which involve the velocity and basically the thrust that the propeller is 

producing with respect to the diameter which is given finally, by the thrust loading 

coefficient ok. So, this will be all for today’s class.      

Thank you. 


