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Lecture - 8 

Introduction to Vapour Power Cycle 

Today, we will continue with the topic which we have started in our last class. That is different 

reversible processes where the working medium is an ideal gas. If you recall we were doing or 

discussing the constant pressure process. 

(Refer Slide Time: 01:22) 

 

This has got another name. It is also called the isobaric process. In this process we have p is 

equal to constant; that means p1 is equal to p2. We have derived the expression for work done 

during this process and heat transfer during this process. If we recall, we have 1Q2 that can be 

expressed in terms of a specific heat for constant pressure into T2 minus T1. That means, a 

differential heat transfer is Cp dT and from this, one can readily get the expression for change in 

entropy. Change in entropy, S2 minus S1 is equal to Cp ln T2 by T1. We have different 

expressions like the expression for work done, the expression for heat transfer, the expression for 
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change in entropy and specific heat in this case is Cp. Similarly, we can think of another 

reversible process, let us say a reversible isothermal process.  

(Refer Slide Time: 03:04) 

 

In a reversible isothermal process, the temperature remains a constant. T is equal to T1 is equal to 

T2 is equal to constant. If we have that then, we will have p1v1 is equal to p2v2 from the equation 

of state or ideal gas law. This is from the equation of state for ideal gas. Once we have this one, 

we can take care of the other property changes. With the help of first law of thermodynamics one 

can write dQ is equal to dU plus dW. dU for an ideal gas or for that matter any other 

compressible fluid, we can write Cv dT plus dW. There is no change in temperature. The change 

in temperature is equal to 0. So this is equal to 0 and there is no change in internal energy. We 

can get dQ is equal to dW and as it is a reversible process and the fluid involved in this process is 

a compressible fluid, dW can be expressed as pdv and we can write 1W2 is equal to integration 1 

to 2 pdv. There is a relationship between p and v; so that relationship can be used for 

determining the work done. 
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1W2 that is equal to 1 to 2, p we have to express in terms of v. How can we express it? We have 

got p1v1 is equal to p2v2 is equal to pv is equal to constant. Let us say this constant is equal to C. 

We have p is equal to C by v. This we can put here and C by v dv we can put. 1W2 is equal to, 

one can take C outside, and then it will be ln v2 by v1. That is what we will get as the expression 

for work done. This C is nothing but p1v1 or p2v2, so we can express it as mRT1 or mRT2 as we 

like it. We can put it as mRT1 ln v2 by v1. That means in an isothermal process if we know the 

initial volume and the final volume, then we can find out what is the work done. Similarly, if we 

know the initial pressure and final pressure, we can determine the work done. The heat transfer 

in this process, we have got dQ is equal to dW for this isothermal process or 1Q2 is equal to 1W2. 

Once we have calculated 1W2 we can calculate 1Q2 also or we can write this is mRT1 or T2 or T 

in v2 by v1. Again, from here, we can calculate the change in entropy.  
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During this process, the change in entropy, S2 minus S1 is equal to integration 1 to 2 dQ by T and 

one can take T outside as it is a constant; so 1 by T integration 1 to 2 dQ, this will be 1Q2 by T. 

S2 minus S1 will be mR ln v2 by v1. This is the change in entropy during this process. Let us use 

for the calculation of heat transfer or for the estimation of heat transfer a different kind of a 

relationship. Let us say dQ is equal to C isothermal into dT. This is the specific heat during 

isothermal process multiplied by change in temperature. We know that heat transfer is equal to 

specific heat into change in temperature. That is what I have written here, dQ is specific heat 

multiplied by change in temperature. dQ, we are getting some sort of a finite quantity or if we 

integrate it 1Q2 that is a finite quantity whereas dT is equal to 0 or there is no change in 

temperature during this processes.  

What does it mean? The product of two quantities is giving a finite result or finite value but one 

of them is 0; then either of this should be infinity. So C isothermal will be either plus infinity or 

minus infinity depending on the direction of the transfer, depending on whether it is heat addition 

or heat rejection. Probably I have mentioned it earlier that for a compressible fluid there is no 

fixed specific heat; the specific heat depends on the type of process. The value of the specific 

heat varies from plus infinity to minus infinity. It can even become 0. Here, we are getting the 

example where the specific heat value is equal to infinity. We are getting the other expressions 

like the expression for heat transfer, expression for work transfer and expression for change in 
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entropy. Not only that, in this process we can see that the change in internal energy is equal to 0 

as there is no change in temperature. 

(Refer Slide Time: 11:24) 

 

Next, we will go to the reversible adiabatic process. Whatever process we have taken so far, 

some property was constant like we have constant pressure process or isobaric process where 

pressure remains constant; we can get a relationship between other properties like volume and 

temperature from the equation of state. In the constant volume process or isochoric process, the 

volume remains constant and one can get a relationship between pressure and temperature. 

Similarly, in the isothermal process the temperature remains constant; again one can get a 

relationship between p and v, pressure and volume. But, here in the reversible adiabatic process, 

we know that there will not be any heat transfer. But what will be the relationship between 

pressure volume and temperature that is not apparent from the verbal description of the process. 

If we say that dQ is equal to 0 or 1, Q2 is equal to 0, readily we cannot say what type of process it 

is. That means, what relationship between pressure, volume and temperature is there, that we 

cannot readily say.  

Let us derive what type of process it is. We know that the first law says dQ is equal to dU plus 

dW. If it is a reversible process and if a compressible fluid is involved, then instead of dQ, one 

can write Tds, dU remains as it is and this is pdv. As it is a compressible fluid the mode of work 
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transfer I have taken as the pv mode of work transfer; pressure, volume mode of work transfer. 

Again, I can write Tds is equal to Cv dT plus pdv. This is what I can write. Let us say that this is 

one relationship I am getting and I am giving a number to this equation. This is equation number 

1. 

Let us say I want to determine this quantity d of pv. This can be written as pdv plus vdp and then 

pdv I can write pdv is equal to d of pv minus v of dp. Let us say this is another equation I am 

getting. If we use one of the previous relationship that is Tds is equal to dU plus pdv we can 

write, this is dU plus d of pv minus v of dp using equation 2. Using equation number 2, we can 

write this. Tds can be again written as d of U plus pv minus vdp or finally we can write Tds is 

equal to dh minus vdp.  

(Refer Slide Time: 16:00) 

 

In the next place I can write, Tds is equal to CpdT minus vdp. Let say, this is our equation 

number 3. We are interested in reversible adiabatic process. For the reversible adiabatic process, 

dQ is equal to 0; heat transfer is equal to 0. Tds we can write as equal to 0, putting Tds is equal 

to 0 in 1 and 3. From 1 and 3 what we can get? From 1 we can get CvdT is equal to minus pdv. 

This is what we can get and from 3 we can get CpdT is equal to vdp. Let us say these are called 4 

and 5. Using 5 and 4 or dividing 5 by 4, one can get Cp by Cv that is equal to minus vdp divided 

by pdv. This is what we get. Now Cp by Cv is specific heat at constant pressure, specific heat at 
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constant volume. This ratio we can replace by another number. Let us call it gamma. Gamma is 

equal to minus vdp by pdv. We need to do some more simplification.  

(Refer Slide Time: 18:47) 

 

If we go about it like this, gamma is equal to minus vdp divided by pdv then we can write it like 

this. Gamma dv by v plus dp by p that is equal to 0. This we can write and by some more 

simplification, we can write ultimately from this pv to the power gamma is equal to constant. 

This is the relationship we will get for a reversible adiabatic process. Unlike other processes, 

which we have seen earlier the relationship between pressure, volume and temperature is not 

explicit from the verbal description of the process that it is a reversible adiabatic process. But if 

you follow the logic, apply the combined first law and the second law then we can see that we 

get the relationship between pressure and volume in terms of the specific heat, that is Cp and Cv 

or in other words in terms of the ratio of the specific heat which is gamma. This is a very well 

known expression for the thermal engineers and we will see in number of places we will idealize 

the process to be a reversible adiabatic process.  

In many cases the expansion process and compression process will be idealized as a reversible 

adiabatic process. Generally, if the process takes place in some sort of a container or cylinder 

which is well insulated, then the heat transfer is very less and the process also takes place very 

fast, so there is not much scope for transferring heat with the surroundings. That is why the 



8 
 

process becomes adiabatic. However there are some dissipative effects. This process cannot be 

made ideally reversible process, but we simplify the process to be a reversible adiabatic process. 

Once we have this, one can have p1v1 to the power gamma is equal to p2v2 to the power gamma. 

Again one can have this relationship p1v1 by RT1 is equal to p2v2 by RT2 this is from the equation 

of state. If you use these two equations then the relationship between pressure, volume and 

temperature, in explicit form you can get. Basically there are different forms of relationships but 

some forms can be written like this. 

(Refer Slide Time: 22:28) 

 

T2 by T1 is equal to v1 by v2 to the power gamma minus 1. This is what one can write or one can 

again get a relationship between temperature and pressure. This is a relationship between 

temperature and volume but one can get a relationship between temperature and pressure. Those 

are not difficult to derive. After that, we are interested to determine the other changes in 

properties or heat transfer and work transfer. Basically, we can apply the first law of 

thermodynamics. From the first law of thermodynamics one can write dQ is equal to dU plus dw. 

In this case, dQ is equal to 0; dW is equal to minus dU or dU is equal to minus dW is equal to 

minus pdv.  

As it is a compressible fluid, again the mode of work transfer is the pv mode of work transfer; 

that is why we have written it. U2 minus U1 that is the change in internal energy is equal to 
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integration 1 to 2 minus p into dv. If we do the simplification, again just like before what we 

have to do is, we have to replace p by v using the relationships which we have derived earlier. 

You will get U2 minus U1 is equal to mRT1 by gamma minus 1 that is equal to p2 by p1 to the 

power gamma minus 1 by gamma minus 1. This is the relationship for change in internal energy. 

This is the relationship or this is the expression for work done also if we put a minus sign in front 

of it. We can get both change in internal energy and work transfer from the same expression, 

only the signs are different. 

(Refer Slide Time: 26:00) 

 

If we are interested in determining the change in enthalpy, h2 minus h1 you can derive it readily. 

The result will be p2 minus p1 whole to the power gamma minus 1 by gamma minus 1. This is 

the change in enthalpy during this process. Again, if we write dQ that is the heat transfer is equal 

to let us say some adiabatic into dT. What we know is that dQ is equal to 0 but we have seen that 

there is a finite change in temperature. If dQ is 0 and it is a product of these two quantities then C 

adiabatic must be 0. The specific heat during adiabatic process is equal to 0. Again I will remind 

you what I have said earlier that specific heat can have any value, even 0. In this case, we are 

getting specific heat is equal to 0. Though there is change in temperature there is no heat transfer. 

Then lastly what we want to do is, we can think of a process which is a general process.  
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We can call it a reversible polytrophic process. This process is denoted as pv to the power n is 

equal to constant. n is called exponent of the polytrophic process exponent of the polytrophic 

process. Then, we can get the relationship p1v1 to the power n is equal to p2v2 to the power n is 

equal to constant and again p1v1 by RT1 is equal to p2v2 by RT2 that is also another constant. 

Using these two relationships, one can derive the relationship between either pressure and 

temperature or volume and temperature. The expressions will be much similar to what we have 

done in case of our adiabatic process and that means one can get T2 by T1 that is equal to v1 by v2 

to the power n minus 1. This relationship one can get using the above two expressions.  
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Here, one can have dw or 1W2 that is equal to 1 to 2 pdv and what one can do is, one can use this 

relationship; that means, pv to the power n is equal to C, p is equal to C by v to the power n. 

Putting this, 1W2 that is equal to 1 to 2 C by v to the power n dv and then one can take C outside; 

this is 1 to 2 or let us do the integration. This will be 1 by minus n plus 1 and at the top v to the 

power, again same thing will come, 1 minus n v to the power v to the power v to the power to the 

power and again same thing will come 1 minus n and then this is 1 to 2. Basically I can write C v 

to the power 1 minus n by 1 minus n and again C can be replaced, 1 to 2 or this is v2 to the power 

1 minus n minus v1 to the power 1 minus n by 1 minus n into C. Next C can be replaced p1v1 to 

the power n or p2v2 to the power n. 
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If we do that, 1W2 will be p2v2 to the power n then v2 to the power 1 minus n minus p1v1 to the 

power n v1 to the power 1 minus n divided by 1 minus n. Then, we will have p2v2 minus p1v1 

divided by 1 minus n and again as p2v2 is equal to RT2 and p1v1 is equal to RT1, we can replace it 

like this; R by 1 minus n then T2 minus T1. This also we can write either in terms of pressure and 

volume or in terms of temperature we can express it. Similarly, if we want to determine the heat 

transfer, in that case, I will use the first law of thermodynamics. 

(Refer Slide Time: 34:40) 
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dQ is equal to dU plus dW; this, I will use. If I do that, I am getting dQ is equal to or let us say 

1Q2 I am getting as U2 minus U1 plus 1W2. I have already got the expression for 1W2. So, 1Q 2 is 

equal to Cv T2 minus T1 plus 1W2. That means this will be Cv T2 minus T1 plus R by 1 minus n T2 

minus T1. Then, we can write it like this. T2 minus T1 can be taken as common. So, Cv minus nCv 

plus R by 1 minus n T2 minus T1; this we can write. Now, what is R? Cp minus Cv is equal to R. 

So, we can replace this as Cp minus Cv. If we do that just 1 step ahead, 1Q2 that is equal to Cv 

minus nCv plus Cp minus Cv by 1 minus n and T2 minus T1. 

(Refer Slide Time: 36:28) 

 

This and this cancel; so, one can have Cp minus nCv by 1 minus n T2 minus T1. Again Cp by Cv is 

equal to gamma. Cp by Cv is equal to gamma or Cp is equal to gamma into Cv. That is what we 

can write. Gamma Cv minus nCV by 1 minus n that is T2 minus T1. This is equal to Cv gamma 

minus n by 1 minus n into T2 minus T1. We know 1Q2 is some specific heat multiplied by the 

change in temperature. This becomes specific heat for polytropic process; this is the specific heat 

for the polytropic process. That means we can write for a polytropic process, dQ is equal to Cv 

gamma minus n by 1 minus n into dT; this we can write. 
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Once we write this then, the change in entropy can be determined very easily. S2 minus S1 is 

equal to this specific heat gamma minus n by 1 minus n ln T2 by T1. Once we have expressed the 

rate of heat transfer in terms of specific heat and change in temperature, next we can write down 

the change in entropy like this and this is the change in entropy for the polytropic process. 

Basically, what we need to know here is the index of the polytropic process and the specific heat 

at constant pressure and constant volume. That is what we need to know for knowing the specific 

heat for any process. It is interesting to note that all the processes whichever we have discussed 

so far, all are some special cases of the polytropic process.  
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A polytropic process is expressed as pv to the power n is equal to constant. If we think of 

different processes, let us say p is equal to constant. That means it is a constant pressure process 

or isobaric process. What I like to show you is the expression for polytropic process pv to the 

power n is equal to constant. Whatever processes we have discussed so far, that means constant 

pressure process or the constant volume process or isothermal process, all are some special cases 

of polytropic process. Let us start with a constant pressure process or isobaric process. In this 

process p is equal to constant. p is equal to constant how can we derive it? Let us see that.  

pv to the power n is equal to constant. If we put n is equal to 0 then it becomes p into v to the 

power 0 that is equal to constant. Then p into 1 that is equal to constant and then the required 

value of n we are getting as 0. In an isobaric process we will have the exponent of the polytroph 

that is equal to 0. We can think that v is equal to constant. In that case we will see that the n 

value which is required to satisfy this equation that becomes infinity. Let us say that temperature 

is equal to constant. This is easy; so, the value of n becomes 1 and then pv to the power gamma 

that is equal to constant and in that case n value becomes gamma. We are seeing that all the 

processes which we have discussed separately all are the special cases of any polytropic process. 

Again, it is left to you the expression for specific heat, what we have got for the polytropic 

process, there if you put the respective values of n you will get the specific heats which we have 

got for the special cases. That also you can check.  
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Lastly, I will just plot all these processes on the pv plane. This is a pv plane. This is your 

constant volume process and this is your constant pressure process. The constant pressure 

process n is equal to 0; constant volume process n is equal to infinity. You will have t is equal to 

constant. That means, n is equal to 1. Let us use another color. This will be clear, this is n is 

equal to gamma. If it is a diatomic gas or air, you know that we take 1.4 to be the value of 

gamma. These are the representations of your different processes on the pv diagram.  

This is what I wanted to convey to you. Here, we can see that if we think of two different 

pressures, let us see from here, let us say this is the initial point and let us say the gas is 

expanding like this. Initially, the gas is at some pressure and then the gas is expanding to some 

other pressure and this is the isothermal path and this is the adiabatic path. From this it is clear 

that the work done if the gas is expanding then the isothermal work done will be more than the 

adiabatic work done. This concept is important, if we are considering a compressor. What 

amount of work is required for compressing the gas, this concept is important. I think here we 

can stop our discussion regarding the different reversible processes, where the ideal gas is 

working fluid.  

After this, we will start a new topic and that is steam cycles or steam power cycle. 
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Basically, steam is used as the working fluid for steam power cycle. A steam cycle is basically a 

heat engine cycle and for any heat engine cycle the motto of the engineer will be to have the 

maximum efficiency. We know if the source temperature and the sink temperature are fixed, then 

the maximum amount of efficiency that can be derived from the source and sink is also fixed. 

That is the Carnot principle. We will get the maximum possible efficiency if we use a reversible 

engine or a Carnot engine between the source and sink. In case of a steam power plant, the 

ultimate sink is the atmosphere where the heat has to be rejected and source that is the 

temperature which we get from combustion, the temperature of flew gas that is the source 

temperature; that can be taken as the source temperature.  

As the sink temperature is limited by whatever is available in our surrounding or environment, 

the source temperature is also limited because we cannot arbitrarily increase the temperature as 

we have got certain materials, engineering materials, which has to withstand the high 

temperature. Basically from the restrained form of the material we have to limit the source 

temperature. We can take this as granted that our source temperature is the highest temperature 

that is limited and the sink temperature that is also limited. Between these two temperature 

limits, we have to get the maximum output or at least we should try to get the maximum output. 

We have learnt that a Carnot engine or a Carnot cycle will be able to give that amount of or that 

maximum performance of the cycle. Using steam as the working substance, let us have a Carnot 
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cycle. I am using the TS diagram. This is T and this is S. Let us say this is the source 

temperature. Due to material restrains or constraints from the material point of view, we should 

not go above this. Let us say this is the temperature of the sink which is available to me. 

(Refer Slide Time: 51:34) 

 

These two temperatures are there and the Carnot cycle constitutes four processes. Two of them 

are isothermal processes, isothermal heat addition and isothermal heat rejection. Then there is 

one adiabatic expansion and one reversible adiabatic compression. Basically, my Carnot cycle 

using steam as the working fluid will be something like this. This is what I will have, a Carnot 

cycle using steam as the working fluid. Here, steam will be generated at a constant pressure and 

a constant temperature, because it is in the two phase region. If it is at constant temperature it 

will be also be at constant pressure in the boiler. Then, adiabatically and reversibly it will expand 

through the turbine then it will condense in the condenser. This is a constant temperature process 

and as it is within the two phase dome, it will be a constant pressure process also. Here, at this 

point, I will get a mixture of steam and water. That has to be compressed reversibly and 

adiabatically to the point where it has to be again heated in the boiler to produce the steam.  

This is what I will get if I use a Carnot cycle. Basically, this Carnot cycle will have four 

components: one boiler, one turbine, then there will be one condenser and then there will be one 

pumping device, which will pump it back to the boiler. These are the four components which are 
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there in a steam power plant. But, in a steam power plant, we do not use the cycle as it is shown 

in this diagram or we do not use a Carnot cycle in practical steam power plant because there are 

number of difficulties. I think we will stop here and in the next class we will start from this point.  


