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Lecture – 17 

Mass Conservation Equation 

 

Welcome to the lecture on Mass Conservation Equation. So, we will talking about the 

governing equations especially the Conservation Equation of Mass in this lecture. And we 

talked about the certain points related to the fluid fundamentals. And now we will be 

talking about the conservation equation for mass.  

So, there are certain assumptions in that we take the fluid as the continuum. 
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So, basically for the analysis of fluid flow at the microscopic length scale so, when it is 1 

micrometer or larger, the molecular structure of matter and molecular motions we have to 

ignore for this analysis. Then we are also having the behavior of the fluid which we will 

try to describe in terms of the macroscopic properties. Like, velocity pressure, density, 

temperature, and they are space and time derivatives. So, we are going to have these 

properties and in that turn we are going to have the discussion about the flow behavior or 

fluid behavior. 



Now, fluid particle or a point in a fluid will be the smallest possible element of fluid whose 

macroscopic properties are not influenced by individual molecules. So, the with these we 

are going to have the analysis of the flow behavior. And when we are going to talking 

about the conservative conservation properties you know, conservative principles for 

certain you know things like mass or momentum. 

So, in this lecture we are going to talk about the mass.  
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Now, if you talk about the properties of the fluids. So, suppose you have a point x, y, z 

where you are defining, now in that case the all the fluid properties are function of the 

space and time. So, you have properties like density, pressure, temperature, or velocity 

they are all said to be a function of a space as well as times. So, we define it as ρ, x, y, z, 

t. So, there will be a function of this space coordinate as well as the time co-ordinate. 

Similarly pressure of also functions of the space and time co-ordinate then you have the 

temperature that is also function of space and time and similarly the velocity. 

So, if you try to have in the properties of to be found at the faces. So this is at the, suppose 

you are taking a cubical element now in that this x, y at x, y, z point you have these 

properties like you know these density or pressure or temperature or velocity. So, if you 

have define at the face, so that can be done by the Taylor series expansion and in that 

assuming it to be very small you can ignore the turns which are coming after the first two 

turns. 



So, if you take this face, so that will be your West face on this side. So, on this face you 

will have if you take the pressure, so if the pressure p is at this point x, y, z. So, at this face 

it will be 𝑝 −
𝜕𝑝

𝜕𝑥

1

2
𝛿𝑥. So, 𝛿𝑥 is the, you know the length of this whole you know face; 

whole length is 𝛿𝑥. And this point has the distance of 𝛿𝑥/2 from this west face. So, it will 

be 𝑝 −
𝜕𝑝

𝜕𝑥

1

2
𝛿𝑥. Similarly pressure at the east face will be 𝑝 −

𝜕𝑝

𝜕𝑥

1

2
𝛿𝑥. 

So, that way you are going to have the, you have to go to define these you know properties 

of the fluids at the different you know faces. So, similar when you go to the you know this 

north face so you will have a 𝑝 −
𝜕𝑝

𝜕𝑦

1

2
𝛿𝑦 y; so this direction is your z so this will be 𝑝 −

𝜕𝑝

𝜕𝑧

1

2
𝛿𝑧.  

So, that way accordingly you will have the value of these you know properties across these 

faces. And that will be used when we talk about the conservation principle of the mass. 
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Now, coming to the mass conservation principle. Mass conservation principle tells that 

you will have the, you know rate of increase of mass in fluid element. It will be as same 

as the net rate of mass into the fluid elements. So, whatever net rate of mass flow there 

into the element it will be same as the rate of increase of mass in the fluid and any elements; 

so what we see. 



As you have seen that you will have at this point if the these properties are ρ, t, u, v and 

all that, so p. So, that will be you will have the values on all these sides. And we will have 

the expression for this you know you know accordingly we will be trying to find so, the 

rate of increase of mass in the fluid element. 
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So, rate of increase of mass in fluid element. So, it will be 
𝜕

𝜕𝑡
; that is rate of increase with 

respect to time and mass will be density into volume. So, volume will be 𝛿𝑥, 𝛿𝑦 and 𝛿𝑧 

that is cubical element. So, density will be ρ and then you will have 𝛿𝑥, 𝛿𝑦 and 𝛿𝑧. So, it 

will be 
𝜕𝜌

𝜕𝑡
𝛿𝑥𝛿𝑦𝛿𝑧, so that is being a constant so that will be coming out. So, 

𝜕𝜌

𝜕𝑡
𝛿𝑥𝛿𝑦𝛿𝑧. 

Now we need to have the value of the mass flow rate across the, you know faces of the 

element. So, you will have the six different faces. And we need to find out the mass flow 

rate across these faces. And it will be given by: so mass flow rate across the face. So, that 

will be the product of the you know density, so that will be ρ. Then you will have the area 

and that will be further multiplied with the velocity component normal to the face. So, you 

will you will have the velocity component which is normal to the face, and then you have 

density and the area. 

So, if you take you know along the boundaries, so you will have the values and if you see 

it will be ρu. So, if you say you are taking the east face or so. So, it will be {𝜌𝑢 −

𝜕(𝜌𝑢)

𝜕𝑥

𝛿𝑥

2
}𝛿𝑦𝛿𝑧. And then it will be, so one is this and another is on the right hand side. So, 



it will be {𝜌𝑢 +
𝜕(𝜌𝑢)

𝜕𝑥

𝛿𝑥

2
}𝛿𝑦𝛿𝑧. So, if you take that in the x directions so you have one flow 

from here another flow on this side. So, that is what you are getting this these two faces; 

taking into account this terminologies coming. 

Similarly, you will have if you take the you know v components. So, you will have {𝜌𝑣 −

𝜕(𝜌𝑣)

𝜕𝑦

𝛿𝑦

2
}𝛿𝑥𝛿𝑧. And that will be further minus of {𝜌𝑣 +

𝜕(𝜌𝑣)

𝜕𝑦

𝛿𝑦

2
}𝛿𝑥𝛿𝑧. So, that will be for 

the y component. 

And then you have the z component. So, that is z component will be again w will be 

coming. So, we will have {𝜌𝑤 −
𝜕(𝜌𝑤)

𝜕𝑧

𝛿𝑧

2
}𝛿𝑥𝛿𝑦, similarly you have {𝜌𝑤 +

𝜕(𝜌𝑤)

𝜕𝑧

𝛿𝑧

2
}𝛿𝑥𝛿𝑦. 

So, this is the basically net mass flow rate that is across the faces. So, you have the rate of 

that is net rate of mass flow into the fluid element. That is what you are seen from here. 

So, one is coming and other is going. So, net rate of mass flow into the fluid element will 

be this particular you know value. So, if you are taking, so in that what you see you will 

be getting these terminologies cancelled and you will get certain terminology. So, here you 

are getting 
𝜕𝜌

𝜕𝑡
𝛿𝑥𝛿𝑦𝛿𝑧.  

Now in this case, what you say this is −
𝜕(𝑢)

𝜕𝑥

𝛿𝑥

2
}𝛿𝑦𝛿𝑧 and that will be −

𝜕(𝑢)

𝜕𝑥

𝛿𝑥

2
}𝛿𝑦𝛿𝑧. So, 

these two terms will be you know added and they will be negative term of {−
𝜕(𝑢)

𝜕𝑥

𝛿𝑥

2
}𝛿𝑦𝛿𝑧. 

So, that is what you are getting. so And this will be term you know ultimately together and 

that will be equated to these term. 
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So, what you get is that you are getting this term 
𝜕𝜌

𝜕𝑡
𝛿𝑥𝛿𝑦𝛿𝑧, that will be equal to this term 

𝜕𝜌

𝜕𝑡
𝛿𝑥𝛿𝑦𝛿𝑧,. So, it will equal to a −

𝜕(𝜌𝑢)

𝜕𝑥
𝛿𝑥𝛿𝑦𝛿𝑧 − −

𝜕(𝜌𝑣)

𝜕𝑦
𝛿𝑥𝛿𝑦𝛿𝑧 − −

𝜕(𝜌𝑤)

𝜕𝑤
𝛿𝑥𝛿𝑦𝛿𝑧. 

So, that is coming as the negative term when you add all these terms of this. So, it will be 

minus and minus, so it will be that 
𝛿𝑥

2
𝛿𝑦𝛿𝑧. 

Now, this with you can write. So, 𝛿𝑥𝛿𝑦𝛿𝑧 can be cancelled on both the sides. So, you can 

write 
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0. So, this is what you get. So, this equation that is what 

you are getting that is known as the conservation of mass. This is known as the mass 

conservation equation.  

Now what you see, so this if you try to you know right in a compact vectorial form. So, in 

upcoming vector notation you can write this as 
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣. (𝜌𝑈) = 0. So, that is also this is 

also known as the mass conservation equation. 

Now, this is known as the three dimensional mass conservation equation or we can also 

call it as the continuity equation. So, normally that is generally defined for the 

compressible fluid. However, if you have the incompressible fluid where density does not 

vary, so in that case ρ will be constant. 



So, for incompressible fluid so, when we talk about the fluid flow like water or steel or so 

they are incompressible nature. So, in that case the ρ is basically constant. So, as the ρ 

becomes constant so your term become 𝑑𝑖𝑣. (𝜌𝑈) = 0. So, this is the, you know equation 

that is known as the continuity equation for the compressible flow. 

So, you simply write in that case the rho becomes constant, so rho will come out so 

𝑑𝑖𝑣. (𝑈) = 0. So, it will be 
𝜕(𝑢)

𝜕𝑥
+

𝜕(𝑣)

𝜕𝑦
+

𝜕(𝑤)

𝜕𝑧
= 0. So, that is what the continuity equation 

you know is defined as.  

Now, next thing what we will; so next will be studying about the momentum conservation. 

And before that we need to know something about the rate of change of the, you know 

following the fluid particle and for a fluid element. So, that is capital 
𝐷

𝐷𝑡
 so, 𝐷𝜑 additive 

for any fluid property.  
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So, that will be the rate of change that is total derivative basically. So, that is the follow in 

a fluid particle and for a fluid element. So, you will have the changes in the properties of 

the fluid particle and for that Lagrangian approach is you know used. And each property 

will be the function of the position and the time so, the all the properties being the function 

of the position and time; so x, y, z and t. 

So, we normally you have any property per unit mass which we define; so we define. So, 

supposed let we the value of a property per unit mass be 𝜑. So, if you are seeing that 𝜑, so 



it will be depending upon. So, its value will be depending value will be depending upon x, 

y, z and t. 

And if you talk about the total derivative or the substantial derivative that is capital 
𝐷

𝐷𝑡
, so 

total or substantial derivative. So, that is basically represented by 
𝐷𝜑

𝐷𝑡
 of any property. So, 

that 
𝐷𝜑

𝐷𝑡
 will be you know represented that will be equal to 

𝜕𝜑

𝜕𝑡
+

𝜕𝜑

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝜑

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝜑

𝜕𝑧

𝑑𝑧

𝑑𝑡
. So, 

this is the expression for the substantial derivative and this will be used when we will talk 

about the conservation of properties like momentum or temperature in that those cases.  

Now, for a fluid particle you know which is in the flow. So, your 
𝑑𝑥

𝑑𝑡
 will be u and 

𝑑𝑦

𝑑𝑡
will v 

and 
𝑑𝑧

𝑑𝑡
 will be you know w. So, this will be your u, this will be v, and this will be w. So, 

you can write you know 
𝐷𝜑

𝐷𝑡
=

𝜕𝜑

𝜕𝑡
+

𝜕𝜑

𝜕𝑥
𝑢 +

𝜕𝜑

𝜕𝑦
𝑣 +

𝜕𝜑

𝜕𝑧
𝑤.  

So, you can further write this you know as: my first is the transient term that is 
𝜕𝜑

𝜕𝑡
+

𝑈. 𝑔𝑟𝑎𝑑𝜑. so it will be the, you have three components u v w. So, accordingly you 
𝜕𝜑

𝜕𝑥
𝑢 +

𝜕𝜑

𝜕𝑦
𝑣 +

𝜕𝜑

𝜕𝑧
𝑤. So, this basically 

𝜕𝜑

𝜕𝑡
 it will be defining the rate of change of the property 𝜑 

per unit mass. And that way we are going to use it for you know for expressing you know 

when we are going to have the definition for the for the conservation of mass equation or 

for the conservation of momentum equation. 

So, in that case we are going to have the use of these property 𝜑 in the different manner. 

So, if you talk about the mass conservation equation; so you if you talk about the mass 

conservation equation, you will have mass per unit volume is basically ρ. So, that is the 

conserved quantity. So, in that case you know if you talk about change of the densities. So 

some of the rate of change of the density you know in time and the convective term and 

you know in that mass consecutive term. 

So, if you talk about the conservation equation for the mass which we have derived earlier 

that was the 
𝜕𝜌

𝜕𝑡
. So, your this 𝜑 will be basically replaced by a 𝜌. So, it will be 

𝜕𝜑

𝜕𝑡
+

𝑈. 𝑔𝑟𝑎𝑑𝜑. And since 𝜌 will be will not be changing. So, so accordingly you can see here 

that was 𝑑𝑖𝑣. (𝜌𝑈). 



So, that is what you can get it you know from that particular equation itself. 
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So, if you try to have the this you know for the for the you know arbitrary conserved 

property you can write the generalized you know term that will be: 
𝜕(𝜌𝜑)

𝜕𝑡
+ 𝑑𝑖𝑣. (𝜌𝜑𝑈). 

So, you know if you try to derive the conservation equation for either the mass or the 

momentum you can directly get from here. 

Now, if you see that, you know if you look at the expression the 
𝜕(𝜌𝜑)

𝜕𝑡
+ 𝑑𝑖𝑣. (𝜌𝜑𝑈) So, 

that will be if you see it will be 𝜌[
𝜕𝜑

𝜕𝑡
+ 𝑢. 𝑔𝑟𝑎𝑑𝜑] + 𝜑[

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣. (𝜌𝑢)]So, that becomes 

equal to 𝜌
𝐷𝜑

𝐷𝑡
. 

Now, in this case what you see that, the term that is 𝜑
𝜕𝜌

𝜕𝑡
. Now this term is 0 because the 

density is constant. So, that term becomes 0 and also plus 𝑑𝑖𝑣. (𝜌𝑢) so that this term 

becomes 0. 

So, what is coming out of this expression is that you when you see the rate of increase of 

you know any property 𝜑 of a fluid element, so that is your 
𝐷𝜑

𝐷𝑡
substantial derivative. That 

will be you know net rate of flow of 𝜑 out of the fluid element plus rate of increase of  𝜑 

for a fluid particle. So, accordingly you can have. So, if you look at the momentum 



equation which we will try to you know derive in that you will have the term for x 

momentum y momentum and z momentum. 
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So, if you look at the x momentum term. Now in that case you will have a different terms. 

So, you will have the term u, you will have 𝜌
𝐷𝑢

𝐷𝑡
. And accordingly you will get 

𝜕(𝜌𝑢)

𝜕𝑡
+

𝑑𝑖𝑣. (𝜌𝑈𝑢). So, that will be for the x momentum. 

Similarly, if you go for the y momentum: y momentum you will have the velocity 

component is v. So, you will have the total derivative 𝜌
𝐷𝑣

𝐷𝑡
 and that comes as 

𝜕(𝜌𝑣)

𝜕𝑡
+

𝑑𝑖𝑣. (𝜌𝑈𝑣). So, so accordingly this way you will have the z momentum equation, and in 

that you have w so it becomes 𝜌
𝐷𝑤

𝐷𝑡
. And that becomes equal to 

𝜕(𝜌𝑤)

𝜕𝑡
+ 𝑑𝑖𝑣. (𝜌𝑈𝑤)  

So, so accordingly you know if you use this total derivative term, this total derivative total 

or derivative or substantial derivative expression that will be used for finding these 

conservation equation for momentum also in the long in the coming lectures, where we 

will be having the derivation of these conservation equation for the momentum. So, in the 

coming will be having you know the expression for the momentum equation in three-

dimension. 

Thank you very much. 


