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Heat Flow in Welding

Welcome to the lecture on heat flow in welding, so in the last lecture we discussed about the

different heats sources, which is used in welding and typically, we also got the idea about the

efficiency of those heat sources. Now, we will try to understand how there will be heat flow

in the welding, so we will try to have the understanding about the fundamentals of the heat

flow equations. 

And then also in our coming lectures, we will try to have an understanding of the temperature

distribution in the welding. So, in this lecture we will try to have the understanding about the

basic equations which govern this, if you talk about the heat flow in the welding.
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So, heat flow in welding basically is due to the heat input by welding source in limited zone

and further it is flow into body of work piece by conduction, so certainly we know that we

are you know using a heat source that heat source will generate the heat and that heat will be

basically in a local manner, it will be doing its job by melting you know but then as the heat

which is there that will be basically flowing into the body.



Because all around that zone where the metal is melted, you have the metallic material, so

that takes the heat from it, so that goes by conduction and certainly when you have a liquid

metal pool and which is exposed to the surrounding which is exposed to environment, so

there will be some you know loss to the surroundings by radiation and there will also be some

you know loss or heat flow by convection also.

So but then we neglect because that is in a very small you know amount as compared to their

heat which is flowing into a body using the conduction mechanism. Now, what we see in case

of welding process is that you have a source which is the heat source that is where the arc is

striking the you know the metal. So, in that zone, so that basically heat there basically, large

amount of heat is generated.

And also that is moving along certain direction so basically, you know if you try to see then

you can I mean consider this welding process can be considered typically a problem of heat

conduction  you  know with  a  moving  heat  source  because  the  source  which  is  there  its

basically moving in certain direction. Now, so certainly that you must have the concept about

the heat flow, what are the governing equations for heat flow?

And then only you will be able to have the idea about what will be the temperature at certain

point, so you will have some assumptions also.
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And there  will  be  further  simplification  using  the  assumption  of  work  piece  with  larger

dimension, so if you take the work piece of larger dimension in that case, the you know



infinity concept is you know coming into picture and that tells that the temperature at farthest

end of the work piece in all  directions  remain unchanged.  So, wherever we are typically

thinking about the heat transfer at that particular point and if you take the point which is quite

distant from there.

So there you know the temperature in all directions basically, remain unchanged so, you will

have a you know temperature distribution pattern can be seen and that can be; so that will be

another simplifying assumption, so that basically leads to the quasi stationary state, we call it

as and this quasi state means that a condition in which the observer at a point will see a fixed

temperature field all around the arc at all times.

So, if you have an observer and you know and he looks at the temperature field, so what he

will see that you know around the arc, a field which is generated, so you will have a fixed

temperature field, so if you have an arc all around you will have you know the constant you

know, temperature field.
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So, it will be something like you know you have so, you have a direction in which you are

welding and what you see is  that if  you are having you are you are at  this  point at  this

moment, so what you see is that your temperature distribution will be moving like this, so this

will  be your  this  way your temperature  distribution  will  move like so,  you know this  is

temperature field in that can be considered to be in the case of quasi stationary, a state of

welding.



And you will have you know the temperatures you know so, you will have suppose this is a

temperature T1, this is temperature T2, this is temperature T3, this is temperature T4, so and

then if you are you know moving in certain direction,  so after some time at present time

suppose this was in the past, so at present you will have again you are having you know this

point, so this way your temperature field will be looking like.

So, again you will have the you know temperature lines like this is T1, this is T2, this is T3 and

this is T4, so this is your direction of welding and in fact the T1 is smallest and T4 is the

largest one, so T4 is more than T3 then T2 and then T1, so that way your; so that is talking

about so this way your; you know the heat flow will be taking place. Now, what happens that

in  the  case  of  you know,  so  we  are  talking  about  the;  this  so,  what  we see  is  a  fixed

temperature field all around the arc at all time.

So that is what we are seeing that you have if you look at it, observer will see all around the

arc he will be seeing this fixed temperature line now, if we try to determine the temperature at

any  point  in  the  work  piece  during  welding  so  certainly,  the  problem  can  be  solved

considering basic Fourier’s you know equation so, equation of heat conduction is there in

Fourier’s heat conduction equation.

And as we know that you will have, so what we see that in the case of Fourier’s conduction

equation if you try to revise so, it tells that the rate of heat transfer.
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So, if you go to the Fourier’s equation; Fourier’s law of conduction so, it tells that the rate of

heat transfer, so that is you know per unit time if you look at this unit that is if you call it as a

q, so q will be the product of; so q basically will be product of area A, so it will be area A*

∂T
∂ x

 so that is your temperature gradient at the section.

And then you have the thermal conductivity, so that is your you know the q defined as and

you know sign negative because heat flow will be occurring in the direction of decreasing

temperatures that is why we call it keep this I mean sign as negative and this is also known as

the dQ/dt, so that is rate of heat flow so, we call it as the dQ/dt, so dQ/dt can be taken as this

you know, so that is your Fourier’s law of heat conduction and it can be derived by you know

by if you go for the one-dimensional case, then you can have you know a geometry where we

must have done earlier.

So, if you take a geometry of this type where there is unidirectional heat conduction, so you

will have such a slab through which the heat is you know moving from this side to this side

so, you will have this dimension as dx and then in this case, you will have the heat transverse,

if you look at the temperature; this will be the high temperature and this will be at lower

temperature.

So, this you know this difference that will be dT, so and then you will have other dimensions

like this is taken as dy and you have, so this if you look at the value, if this is taken as dQx, so

this distance will be x + dx and this is taken as dQ (x + dx), so that way you can have, so we can

get the expression for that you can have the you know, some names to these phases and

accordingly you can get the expression.

So, this is the condition of unidirectional heat flow and in this, there are many assumptions

like heat flow in the y and z direction, so here you are having the assumption that you know

you are still taking these you know in the heat flow in y and z direction is 0 and accordingly,

so you solve this equation and try to have the temperature field. 
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Now, if you take the 3 dimensional you know heat flow, so if you go to the 3 dimensional

heat flow equation, so in that basically we are talking about the simple cube and if you take a

cube of you know of this shape, so that is how the cubic shape can be taken and in this you

can have this; this has a, b, c, d and similarly you have you know e, f, g, h, so you will have e,

f, g, and h.

Now, in this case the heat transfer will be heat flow will be in all the you know 3 directions

you know x, y and z, so you will have dQx you know here and this from this side, it will go

dQx + dx, similarly you will have so, this is your y so, this is your x direction, this is your y

direction and this is your z direction, so in this case you will have here a dQy and then from

here it will you know move.

So that way it will go dQy + dy similarly, you will have the dQz and dQz + dz, so that way you

will have the flow of heat from all the phases in the case of 3 dimensional geometries. Now,

in this case as the geometry indicates you will have the volume of the you know geometry, so

volume, v = dx.dy.dz, this will be the volume of this cubical element.

Now, dQx is  the quantity  of heat  which is  entering towards  the x phase,  so this  is  your

direction  x  and  this  is  the  direction,  this  you  know this  dimension  is  dx,  similarly  this

dimension will be dy and this dimension will be dz, so that is how you know, so we take it as

dx dy and dz. Now, you can have the; you can use that Fourier’s law of conduction and you

can get the expression for dQx/dt, so dQx/dt = – KA.



So, A will be the area of this phase, so that will be you know this is your this side and this

side, so this side is dy and this side is dz, so it will be dy.dz and then you will have the term

that is temperature gradient, so that will be 
∂T
∂ x

, so that is your use of the partial differential

term and if you take the dQx + dx, so if you find the dQx + dx term, now dQx + dx term can be

written you know using the Taylor expansion theorem, you can write it as dQx, then you will

have 
∂
∂ x

 (dQx)dx.

Similarly, the other you know terms will be going out ahead of this, so if you take dQx + dx –

dQx, so dQx + dx - dQx, = 
∂
∂ x

(dQx).dx, so that will be your you know this, so but if you get the

value of dQx – dQx + dx, so it will be 
−∂u
∂ x

×dQ x×dx, so that way you get this you know term

dQx – dQx + dx, it will be 
−∂u
∂ x

×dQ x×dx .

Now, if you substitute you know this value of dQx and if you, so in this value you have the if

you find this dQx value, so if you substituting this value, your this value becomes 
−∂u
∂ x

 and

then you take -K and then dy/; you know dy * dz and then you have 
∂T
∂ x

, so that is what you

are taking the value of dQx and then you will have the dx * dt, so that is your this dt will go

into this side.

So that way you are getting this term and what this way you are coming to what you see is

that this dx, dy and dz will come from this side, so you will have you know so, you have

minus sign here and minus sign here also, so that way it will be a positive sign so, you will

have you know 
∂
∂ x

 of K dx dy dz, so you will have you know and dx dy dz can be taken out.



So, you will have; so that will be your dv, so it will be K and 
∂T
∂ x

and your dx dy dz because a

constant values, so it can go out, so you will have the term dv you know and dt, so that way

you are getting the value of the dQx - dQx + dx, similarly you can have the value for the dQy

- dQy + dy , so that is you know heat is flowing from here to and the difference of rate of heat

flow that we can find.

And similarly, dQy - dQy + dy that will be according to this you know this equation you can

have  𝜕 by; you know y𝜕  of [K 
∂T
∂ y

] dv.dt, so that way you may have the dQ z – dQz + dz.
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So, in a nutshell what we get is dQx – dQx + dx, it will be 

dQx−dQx+dx=
∂
∂ x [k ∂T∂ x ]dQ.dt 

dQ y−dQy+dy=
∂
∂ y [k ∂T∂ y ]dQ.dt  

dQz−dQz+dz=
∂
∂ z [k

∂T
∂ z ]dQ.dt 

So that way you are getting you know the 3 expressions; so if you talk about the total heat

gained so, if you talk about total heat again in this cubic element; total heat gained in cubic

element that will be the dQx – dQx + dx + dQy - dQy + dy + dQz – dQz + dz.



So, in cubic element if you talk about the total heat gained, it will be dQ and it will be the

summation  of  all  these  and if  you write  you know this,  it  will  be  so  you can  take  the

dQ=dv [ ∂∂ x (k ∂T∂ x )+ ∂
∂ y (k

∂T
∂ y )+ ∂∂ z (k

∂T
∂ z )]dtcoming into picture, so that way what you see

this dQ term is coming as the dv into this.

Now, further if  you talk about  the heat gained in the system, it  is  nothing but it  will  be

expressed in terms of increase in the internal energy of the system so, if you talk about the

internal energy increase of the system, so that is your DE, it will be so, we know that will be

mass into the specific heat into temperature difference so, it will be m. s .t . and you know, so

you have mass as volume into density.

So is it density is 𝜌and volume we know that volume is dv, so that is your dv, the volume of

the that element, then you have specific heat that is and then you have temperature difference,

so that is dt and dt, so that way you will have this expression and basically both can be

equated so, if you try to equate now, in this equation you know that all the things you see this

is the Cp, specific heat at constant pressure.

And you have other terms known to you, so what you do is; you have to equate these two

values, so you will have dQ = dE, so if you do that you will be getting the expressions and

that  will  come  as  so,  you  will  have

dv [ ∂∂ x (k ∂T∂ x )+ ∂
∂ y (k ∂T∂ y )+ ∂∂ z (k

∂T
∂ z )]dt=(ρ . dv ) . C p

∂T
∂ t
. dt So that way you will have this

term and if you know if you take the K as uniform in all the directions, if the K becomes

constant, then this K will come out and this dV will be also be cancelling, the K will be

coming out so, your equation will come as  K [ ∂
2T

∂ x2
+
∂2T

∂ y2
+
∂2T

∂ z2 ]dt=¿now, this will be; dv

term will be cancelling.

So, you will have the ρ .C p
dT
dt

and this dt term will also get cancelled, so that way you know

this so, if you keep dt here, it will be also coming as dt and anyway that dt has to go now, if



you talk about that condition in which with respect to time basically, there is no temperature

difference so, from here you are getting the expression that is you can have these equations

written like 
∂2T

∂ x2
+
∂2T

∂ y2
+
∂2T

∂ z2
.

That can be taken as 
ρ .C p

K
. dT
dt

, now this is basically the equation of the 3 dimensional you

know heat conduction in solids now, what happens that we try to define this term 
ρ .C p

K
K, so

K
ρ .C p

 is taken as the term α .
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So, if you take  𝛼as  
K
ρ .C p

 , so in that case your equation can be written as you know so,

Fourier equation becomes 
∂2T
∂ x2

+
∂2T
∂ y2

+
∂2T
∂ z2

=
1
α
. dT
dt

 , so this is known as the Fourier’s, you

know law; Fourier’s equation of the 3 dimensional heat flow. Now, this equation is basically

implied in the case of welding.

And then the temperature distribution basically is tried to be you know found out so, in the

case of welding as we discussed that you have you know what we see in those cases that if

you take you know a very large plate  where we had seen that we are using this  infinity



concept so, now in this case suppose, you have you know you define so, what you see is that

that this is your x direction and this is your z direction.

So, what you see and this  is  your x is your direction of welding now, in this  case what

happens that your source which is there, the heat source which is there, it is not fixed at any

particular point basically, it is moving so and moving in the in this x direction, so and you

know so there is the arc which is here at this point it will be moving to this point at you know,

some point of time.

So, if you take you know, if you want to find you know the temperature distribution at any

you know point that is if suppose, you are taking this point as A and if you want to find the

temperature distribution at this point x, y, z, now in this case your tip of the electrode will be

moving in the x direction,  so other you know distances will remain fixed except the you

know x coordinate system.

So, what we do normally in such cases we are basically changing this coordinate system you

have to take the you have to shift the coordinate system, so along the x direction basically,

you will have the another parameter which will be coming in place of x and what we do is in

that coordinate system we are taking this because if suppose V is the velocity of you know

welding.

In that case, we are basically taking  ζ and ζ is taken as x – vt, so at any you know time taken

by welding at any time, if you try to find so, you will have y and z coordinates remaining

fixed but the x coordinate because this if you talk about the distance on this point A, so that

will be changing, so because of that change we are changing this you know coordinate system

with respect to you know, the tip of the electrode.

And zeta we are taking as x – v.t, where the v is the welding speed and t is the time taken by

welding, so that is starting from origin O, so if you take you know this origin as O, so after

time t, it has to travel; it will travel a distance of suppose v.t, so this distance which is x, it

will be x – v.t, so that way your  ζ will come into picture, so apart from so instead of the

coordinate as x, y, z, it will be zeta y, z that will be taken.



Because there is movement in certain direction and that will lead to certain changes because

if ζ is taken as x - vt, so your d /ζ  , if you take  
∂ζ
∂ x

, so 
∂ζ
∂ x

 will be coming as 1 and if you

take the  
∂ζ
∂ t

, so that will be certainly as you see, it will be taken as - v, so T will be the

function of basically zeta and time, so because the T is the function of  ζ and time.

So, what we get further T is since it is a function of zeta and time, so we have to have the

expression for ∂T  by; so the differentiation of the d Twith t, so if you take the differentiation

of dT/dt, so it will be taking so, we will have the partial you know differentiation principle, so

once you will differentiate in terms of zeta and then 
dT
dt

=
dT
dζ
. dζ
dt

+
dT
dt
. dt
dt

and as we know 
dT
dζ

, so 
dT
dζ

will be as usual and 
dζ
dt

(−v )+
dT
dt

=−v dT
dζ

+
dT
dt

, so that way you

are getting the expression for 
dT
dt

, with respect to time.

Similarly, we can have the expression for 
dT
dx

also, so you will have the expression for 

dT
dx

=
dT
dζ
. dζ
dx

=
dT
dζ
.1 

dT
dx

=
dT
dζ

 

Similarly, if you; so further we can differentiate these you know expressions and try to have

the expressions for the  
∂2T

∂ζ 2
, so if you further differentiate say you are differentiating with

respect to you know, if you are differentiating further with respect to x, this equation so, it

will be 
∂2T

∂ x2
=
∂
∂ x ( dTdζ ).

So that will be basically 
∂
∂ζ

, so you can write as 
∂
∂ζ ( dTdζ ) dζdx , so you can write it as 

∂2T

∂ζ 2
. So,

what you see that 
∂2T

∂ x2
will be 

∂2T

∂ζ 2
and 

dT
dx

is 
dT
dζ

and 
dT
dt

will be -v of 
dT
dζ

+
dT
dt

.



Now,  these  expressions  will  be  used  to  find  the  temperature  distribution  in  the  case  of

welding that we will do in our next lecture, where we try to find in actual case, when you

have a moving you know heat source, what will be the temperature distribution, so that we

will see it in our coming lecture. Thank you very much.


