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Hello, today we are going to discuss about the precise parameters of measurements. In our last

lecture we have already discussed about the x rd diffractions and their applications. So in this
particular lecture first we will discuss about the different types of errors generally we are
freshing for doing the x rd.
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Introduction:

% Many applications of x-ray diffraction require precise knowledge of the lattice
parameters of the material under study.

% Exumples;
Y Composition of a given solid solution; Lattice parameter of solution varies with the
concentration of solute,
v Thermal expansion coefficient: By measurements of lattice parameter as a function
of temperature in a high-temperature camera or diffractometer.

4 Since a change n solute concentration or temperature produces only a small change in
lattice parameter, precise parameter measurements must be made m order to measure
these quantities with any accuracy

So many applications of the x-ray diffraction require precise knowledge of the lattice parameters
of the materials, when we are doing the study. So what are the examples? Like competitions of a
given solid solutions. Lattice parameter of solution varies with the concentration of solute and
next the thermal expansion coefficient. By measurement of lattice parameters as a function of

temperature in a high temperature camera or may be the diffractometer.
So since a change in solute concentrations or temperature produce only a small change in lattice

parameter, precise parameter measurements must be made in order to measure these quantities
with accuracy. So measurement of the Bragg angle, so generally as we know the Bragg’s angle is

or maybe the Bragg’s law is A is equal to 2d sin 6.
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Measurement of Bragg Angle:

|Bragg’s Law: A= 2dsing

¥ Precision in d, or a depends on precision in sin @ (derived
quantity) and not on precision in # (measured quantity). sy
ik
# The error in sin  caused by a given error in f decreases as
B mcreases.

7 Value of sinf changes very slowly with 0 in the
neighbourhood of 90°,

» A very accurate value of sin@ can be obtained from a

) . ERA . . o I deprecs)
measurement of @ which is itself not particularly precise, Variation of $in 8 with @

provided that 6 s near 90°. 0

So precision in d or A depends on the precision in sin 8 derived quantity and not on precision in 0
that is the measured quantity. So the error in sin 6 caused by a given error in 0 decreases as the 0
increases, so in this particular figure you can see that at low angle that 6 if we increase more so
automatically the sin 6 will be more than that and at the higher angle ice almost 90° if we

increase the 6 more also but sin 6 change in the sin 0 is very, very less.
So value of sin 6 changes various slowly with 0 in the neighborhood of 90°, so hence it is going

near about 90°. So a very accurate value of sin 0 can be obtained from a measurement of 6 which

is it not particularly precise, provided that 0 is near about 90°.
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Mathematical Explanation:

Bragg'sLaw: 4 =2dsinf

Differentiating Bragg's law (logarithmically), % - ﬂ—;— cotf Af

Neglecting A4 yields % = - cotf Af

In the cubic system, a=dvhi+ ki 42 ¥ Key to precision _in _ parameter
Therefore measurements:  Use  back  reflected
i \ beams having 26 values as near to 1807
| A = Ad ——rotfA0 | s possible,
La d !
e # Diffracted beams cannot be uhscrvgd at
Since cotf approaches zero as § approaches 90°, )Hl— |'r‘1l| : lhqclurc. the true 'laalut of
Aa/n, the fractional error in o caused by a given error a s found simply h)" plotting - the
in f, also approaches zero as @ approaches 90°, or as measured  values  against 26 and
2 approaches 180° extrapolating o 26 = 1607

So by mathematical explanations also we can prove it, so from Bragg’s angle we know A is equal
to 2df sin 0, differentiating the Bragg’s law logarithmically. So A d by d is equal to A A by A- cot
0 A 0. So neglecting A A is A d by d is equal to — cot 0 A 6 and in the cubic system w already
know that A is equal to D. route over a* + k* + 12, In the cubic system as we know already A is
equal to D into route over a*+ k*+ 1%,



Therefore A A by A is equal to A D by D is equal to — cot 8 A 6. Since cot 6 approaches 0 at 0
approaches to the 90° and A A by A the fractional error in A caused by a given error in 6 also
approaches 0 as 0 approaches 90° or as 2 6 approaches 180°. So what is the key to precision in

parameter measurements, use back reflected beam have 2 0 values as near to 180° as possible.
And deflected beams cannot be observed at two 0 is equal to 180° therefore the true value of A is

pond simply by plotting the major values against 20 and extrapolating to 20 is equal to 180°.
Then we are going to discuss about the diffractometer. So the diffractometer is the complex

apparatus and therefore subject to misalignment of its component parts.
(Refer Slide Time: 04:16)

Diffractometers:

# 'The diffractometer 15 a complex apparatus and therefore subject to misalignment of its
component parts.

» Difficulty i most commercial diffractometers: the impossibility of observing the same
back-reflected cone of radiation on both sides of the incident beam.

Sources of systematic error in ‘d’ due to diffractometer:

|, Misalignment of the instrument.

(=]

Use of a flat specimen mstead of a speciumen curved to
conform 1o the focusing circle

3. Absorption in the specimen.
4. Displacement of the specimen from the diffractometer axis.
5. Vertical divergence of the incident beam,

So difficulty in most commercial difrfractometers are like that the impossibility of observing the
same back reflected cone of radiation on both sides of the incident beam. So there are several
sources of systematic error in d due to the diffractometer. What are those? First one,
misalignment of the instrument second is that use of a flat specimen instead of a specimen

curved to conform to the focusing circle.
Third is the absorption in the specimens fourth is the displacement of the specimen from the

diffractometer axis and the last one is the vertical divergence of the incident beam. So these all

errors have been listed in this particular image.
(Refer Slide Time: 05:04)



1. Misaliznment of the Instrument:
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2. FlatSpecimen Error:
The entire surface of a flat specimen cannot lig on the focusing circle

Remedy:

This error is minimized, with loss of intensity, by decreasing the
irraduated width of the specimen by means of an incident beam of
small horizontal divergence

So first we are going to discuss about the misalignment of the instruments. So the centre of the
incident beam must intersect the diffractometer axis and 0° position of the detector slits. So here
the x-ray shows the incident beam is coming then it is falling on the specimens and then it should
directly go to the detector itself through the detector slit. So in this particular case the error may

occur.
Then flat specimen error as I told already the specimen surface should be flat it should not be the

curved one. Then there will be error that is known as the flat specimen error. The entire surface
of a flat specimen cannot lie on the focusing circle. What at the remedies this error is minimized
with loss of intensity by decreasing the irradiated width of the specimen by means of an incident

beam of small horizontal divergence?
So in this particular case you can see that the flat specimen here the problem is that the error may

occur in this particular case or may be the join. Next hard one is the absorptions in the specimen
sample transparency error. While x-rays penetrate into the sample depth of penetration depends
on mass absorption coefficient of the sample and the incident angle of the x-ray beam. So this

produces error.
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3. Absorption in the Specimen- Sample Transparency Error:

# While x-rays penetrate wto the sample, depth of penetration
ilepends on
* Mags absarplion coelTicicat of sample
* Incadeat angle of the Xeray bean,
# This produces errors because not all X rays are diffracting
fiom the same location i your sample
* Produces peak position errars and peak asvmmelry,

¢ Cireates! o orgamic and Low absotbing (ow atomic numbery \
samples. s

Remedy: 0
Specimens of low absorpfion should be made as thin as possible.

Because not all x-rays are diffracting from the same location in your sample. Yes of course
because some reflection is taking place inside the samples some reflection is taking place at the
surface of the sample. This produces the error because not all x-rays are diffracting from the
same location in your sample that means it produces the peak position errors and the peak
asymmetry.

And also the greatest for organic and low absorbing low atomic number samples. So in this
particular case if you see when the incident beam we are putting on to the sample from a lower
angle the area covering are is more but when the incident beam angle is too high then
automatically the covering area is low but penetration is more. So what are the remedy

specimens of low absorption should be made as thin as possible.
Then number four is the sample displacement error, so when the sample is not on the focusing
circle x-ray beam does not converge at the correct positions to the detector itself.
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4. Sample Displacement Error;

# When the sample 15 not on the focusimg circle, x-ray beam does not
converge at the correct position for the detector,

# 5o, the observed peak position 1s incorreet. The largest single souree of error

. ; a h Ad 0 cos’

mnd given by: =
g ¥ i I sin @

where, | = diffractometer mdius, 13~ specimen displacement paralle] to the dilfraction-

plane aormal (positive whin the displacensent 1 40 font of the axs)

5 Vertical Divergence of the Incident Beam:

+ The X ray beam produced by the Xeray whe 15 divergent,

+ The dvergence means that instead of o single incident angle &, the
sample is acrually iliminated by photons with a range of incident angles, I

o Incicdent beam opties are used (o limit tis divergence,

Remedly:

I This ermor i minimized, wath loss of infensity. by decreasing the vertical opening of the recerving slit

2 Dhvergence slts are also wsed to it the divergenge of the meilent Xeray beam



Yes! Because, it can go to outside of the samples also or maybe it can concentrate on a particular
point also. It will not cover the area of the whole sample so the observe peak position is in
correct. The largest single source of error in d given by A d by d is equal to — capital D cos? 0 by
R sin 8. Where capital R is the diffractometer radius, d is the specimen displacement parallel to

the diffraction, plane normal.
If it is positive when the displacement is in front of the access itself, the next one is called the

vertical divergence of the incident beam. The x-ray beam produced by the x-ray tube is the
divergent one. The divergence means that instead of a single incident angle 6 the sample is
actually illuminated by photons with the range of incident angles. Incident beam optics is used to

limit the divergence.
So when thus incident beam is coming then we are using some divergence slits so that the whole

area can be covered, then after that in we are using some kind of antis scatter slits, so that it can
go through and then it can directly come to the receiving slit it can fall to the single crystal mono
chromated and then from there it can directly go to the detector itself. So remedy this error is

minimised with loss of intensity by decreasing the vertical openings of the receiving slit.
Divergence slits are also used to limit that divergence of the incident x-ray beam. Next we can

see come kind of errors because we are using cameras due to that cameras also we can

experienced some kind of errors, what are those? So first generally three are types of cameras.
(Refer Slide Time: 09:27)

Cameras Used for
Measurements;

Back-Reflection
Focusing Cameras

Piithole
Diffractometers

Debye-Scherrer
Cameras

L J

4]

Generally we are using, first one is called the Debye-Scherrer cameras next one is called the
back- reflection focusing cameras and the last one is called the pinhole difrfractometers. So when
we are talking about the hull Debye-Scherrer cameras for a hull Debye-Scherrer camera the

cheap sources of error in 0 are as the following.
(Refer Slide Time: 09:47)



Hull/Mebye-Scherrer Cameras:

For a Hull Debye-Scherrer camera, the chief sources of error in B are the followmg;:

Off-centering
af specimen

Like film shrinkage, incorrect camera radius, off-centering of specimen and the absorption in
specimen itself, so first we are going to discuss about the film shrinkage and radius error. So
generally it is caused by producing and drying of the photographic film due to that temperature

itself.
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I Film Shrinkage and Radius Error: P
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Since only the back reflection region is suitable for precise measurements, the quantities s prime
¢ and R are related as. In this particular case you can see that this is the join it is known as s
prime and then this is R and this angle is 2¢ and the 2¢. So here the incident beam is going like
this and then it is diffracted and it is coming through this and this is s prime is the parameter of
that particular film where the diverted beam or the diffracted beam is coming.

So ¢ is equal to s prime by 4R, actually it is S prime by R is equal to 4¢. so logarithmic
differentiation gives A ¢ by ¢ is equal to A S prime by s prime — A R by R. so in this particular
case the error in @ due to the shrinkage and radius error is A ¢ s prime due to the shrinkage and R



due to the radius is equal to A s prime by s prime — A R by R whole multipOlied by the ¢. The

shrinkage error can be minimized by loading the film.
So that the incident beam enters to a whole in the film since corresponding back reflection lines

are then only a short distance a part on the film and their space separation s prime is little
affected by the film shrinkage itself. So in this particular case we are seeing that the incident
beam is going in this direction and then it is diffracting and it is falling onto the film itself. So if

we are going to calculate the V value so generally 2 ¢ — 40 which is nothing but this one.
So 2 ¢- 40 into the R which is the radius is equal to V and in this particular case when we are

going to calculate this W value over there so generally 20 by ¢ is equal to s by W. which is
nothing by so many as methods generally we are calculating. Next we are going to discuss about
the off-Ocentering of the specimen. So off —centre specimen is also leads to an error in ¢ that

means we have to keep the sample in a particular location.
If the sample we still be shifting we can get some kind of off- centering error of that particular
specimen.
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2. Off-centering of Specimen:

# Anoff-centre specimen also leads o an error in §

F o Any displacement of the specimen [Fom the camera centre <an always be broken up 6o (wo compornents,
L Ax (parallel o the incident beaii)
2 By (at right angles 0 the incident beam]

R Effect of specimen displucement on lne posiions

Ervor in §" Parilk Right-snghe
88" = AC + DB = 20B = 20N = 2Axsin 29 Dispacenent Diplacene
1L Right-angle Displacement: i
¢ The effect of a specimen displacement at right 'Ih
angles to the incident beam is to shif the lines ,\‘ :
from 4 to C and from B to D. : _f:',' i

¢ When Ay is small, AC = BD, Y AR
¥ So, 1o 4 good approximation, ne emor n S’ s "
mtroduced by a nght-angle displacement. . . '
Al E IS = Mxsin2g AS'z0

So any displacement of the specimen from the camera center can always be broken up into two
components one is A x parallel to the incident beam, if you see in this particular image that
sample should be at the C prime location but now sample is around O, so in between O to C
prime is known as that A x in this particular case and in this particular case in the B figure

number B sample should be in the C locations but it has been vertically shifted to the P positions.
So here C prime to P is known as the A Y. so now what is the parallel displacement over there so

error in its prime this is the S prime over there so error In S prime is known as the AC + DB,
which is nothing but C and DB is almost same so that is why 2 DB. 2DB is nothing but the 2 O
in if we put the perpendicular on to the C prime B line. So if this angle is 2¢ so automatically
when will be your A X sin 2 ¢ so 2 into A X sin 2¢ is the parallel displacement in this particular

case.
And when you are talking about the right angle displacement the effect of the specimen

displacement at right angles to the incident beam is to shift the lines A to C and from B to D. so



in this particular case you can see that A to C is also very, very near and B to D is very near. So A
Y is small so automatically AC is almost equal to BD so to a good approximation no error in S

prime is introduced by a right angle displacement over there.

So in this case A S prime is almost is equal to 0, so what is the total error? The total error in S
prime is due to specimen displacement in some direction in client to the incident to the incident
beam is therefore given by A s prime is equal to 2 A X sin 2.

(Refer Slide Time: 14:37)

Continued. .,
7 The total error in S due to specimen displacement in some direction inchned to
the incident beam is theretore given by:

AS'=Zhxsinlg T
# From peometry of camera, \
§ ‘?._ '
¢= . \
4R / ll,* R ¥ "".
r Cansidering errar only m 8, we have N ) "‘\_ I
|| {2 |
Ap 48 b
¢ -hll I\. - /
¥ Fimally the error in ¢ can be given as, P
. -

®45"  p(2ixsin2g) Ax
v "9 2 singrcos g

So from geometry of the camera we know that ¢ is equal to S prime by 4 R, so in this particular
case we are going to calculate both the errors actually. So considering error in only S prime we
have A ¢ by . T is equal to A S prime by S prime. So finally the error in ¢ can be given as A ¢ C
is equal to A @ S prime by S prime which is nothing but is equal to ¢ into 2 A X sin 2¢ by 4 or 5

is nothing but is equal to A X by R sin ¢ cos ¢ so this is the A ¢ C.
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3 Absorption in the Specimen:

d Absorption in the specimen also causes an efror in ¢,

J It s the largest single cause of error in parameter /
measurements, and unfortunately very difficult to b/

calculate with any accuracy, ”./ \\‘xi Mo
— | W2 I

d To a rough approximation, the effect of a centered, 5.{ L'TJ '
highly abserbing specimen s the same as that of a| | | 7 o |
non-absorbing specimen displaced from the camera | | (V0 A /

center in parallel direction, A /
o It is reasonable to assume that the eror in ¢ due to s

absorption, Ay is included in the centering error,

0



So next we are going to discuss about the absorptions in the specimen itself, so absorptions it is
also one kind of mental replacement type of error. So absorption in the specimen also causes an
error in @. It is the largest single cos of error in parameter measurements and unfortunately very
difficult to calculate with any accuracy to a rough approximation, the effect of a centered highly
absorbing specimens is the same as that of a non absorbing specimens displaced from the camera
center in parallel direction.

So it is reasonable to assume that the error in ¢ is all due to the absorption ¢ A C id included in
the centering error. Now we are going to calculate the overall error by the hull Debye-Scherrer

cameras.

(Refer Slide Time: 16:19)
Overall Error Analysis- Hull/Debye-Scherrer Cameras:

# The overall eror in o due to filim shrnkage, radivs error, centering error and absorption, 15 given by:

(45" ARy Lk ,
dipgyer = |—-—h+—:
P yea |'. T T ih T singreog i ‘
: g \
# From camera peomelry, / Y
i 4
§ =90 -0 4= - 20 sind = cos B cose = sind) ! \"}\}\’ i |
7 Trom Bragg's Law, A=2dsint .\-"I’f
{ % [ sl i \ I'. ,-f I-'
# Therefone we have, ':I : II.'.'lfF - II'JI]I.I i /
i uin | o g Y F.
# Ut substitution pUTTTTII s . AN V4
Vad o sing|/as AR\ Ax | . “m' f
! = —Srr e g | ek Rifliction Geamery
vl cosp|l SR .|“ g e i

I the hack reflection regien, g is small

where SiAd = g and 003 g = 1, then

ad_

d d

Hsinllp = Kcos*

—

The overall error in @ due to film shrinkage radius error, centering error and absorption is given
by here you can see that A ¢ S prime that is the error due to the shrinkage, then R which is the
radius error C which is the centering error and absorption is E so A ¢ S prime RC is equal to A S
prime by S prime — A R by R in to ¢ + in submission of all the errors. A X by R sin ¢, cos ¢ so

from camera geometry we know ¢ id equal to 90 — 6.
And A ¢ is equal to — A 6, so if we just simply change the order so we can get this value over

there and then sin ¢ is equal to cos 0 and cos ¢ is equal to sin 6. So from Bragg’s angle we know
A is equal to 2D sin 6, so therefore we have A d by d is equal to — cos 0 sin 0, [6 0 is equal to sin
¢ by cos @ A ¢. Because cos 0 we are replacing by the sin ¢ and then this sin 6 we are replacing

by the cos ¢.
That is why? Sin ¢ by cos ¢ in A ¢, so on substitutions so what we are getting actually, Ad by d

is equal to sin ¢ by cos @ into A S prime — S —Arbyrinto ¢ + AX by R sin ¢ cos ¢. So in this

ad lﬁ’ 4R dx

il sin‘g When, K = r%-"—:\*%I-mnsmm

particular case you can see that in the back reflection region if ¢ is small whereas sin ¢ is almost
is equal to @ and cos ¢ is almost is equal to 1 then A d by d will be A S prime by S prime — AR
by R + A X by R into sin’ ¢.

So we are getting this equation in as a final and then if we are going to make it more, shorter then
A B by D is equal to K sin® J7 which is nothing but this is equal to K cos” 6. So where K is
nothing but the constant which is A S prime by S prime — Ar by r + A X by R. so K is the capital



K is the constant over here. So the important result is that the fractional errors in D are directly

proportional to cos® 6.
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* The important result 15 that the fractional errors in d are directly proportional to cos®6,
and therefore approach zero as cos’f approaches zero or as @ approaches 90°,

* In the cubic system,
dd da o-aq ]
—=—=——=Kcos*f
d a q
a=ag+ayK cos’d
* Hence, for cubic substances, if the value of @ computed for each line on the pattern s
plotted against cos*@, a straight line should result, and a;, the true value of , can be
found by extrapolating this line to cos*@ = 0.

And therefore approach 0 has cos® 6 approach is 0 or as 6 approaches to the 90°. So in the cubic
system as you already know that A d by d is equal to A A by A is equal to A— A0 by A0 is equal
to which is nothing but the K cos® 0, so A value is A 0 + a0 K cos® 0. A0 hence for cubic
substances if the values of A computed for each line on the pattern is plot as against cos? 0 is
tripped line should be result and A0 and the true value of A can be found by extrapolating this
line to cos® 0 is regard to 0. So this is also one kind of conditions.

Now we are going to discuss about the back reflection focusing cameras, so a camera of this kind

is preferred over hull Debye-Scherrer cameras for work of the highest precisions.
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Back Reflection Focusing Cameras:

A camera of this kind 15 preferred over Hull Debve-Scherrer | |
cameras for work of the highest precsion. ™ '

¢ Smnee the position of o dilfeaction Tme on the Glm 15 (wice ps
sensitive Lo small changes 1n plane spacing with this camera as it 18
wifh a Hull/Debve-Scherrer camera of the same diameter

Back Reflection Focusing
Greom efry
Sources of systematic error for a camera of this kind are; | ——————
[ Film shrinkage.

i
&

1 Incorect camera radius,
3. Displacement of specimen from camera circumference.
4 Absorption in specimen

A

So generally we are getting the berated error less results, so since the position of diffraction line
on the film is twice as sensitive to small changes in plane spacing with this camera as it is with a



hull Debye-Scherrer camera of the same diameter. So in this case this is the film over there so
generally the incident beam is coming through this line this is our sample so it falling onto the
sample and then back reflection is taking place and then it is coming in this point and in this

point onto to the film itself.
So there are several types of sources like four generally four types of systematic error for a

camera of this kind is one is film shrinkage and one is incorrect camera radius then thirds one is
this displacement of specimen from camera circumference and last one is the absorption in

specimen.
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Pinhole Cameras:

# The pimhole camers, used in back reflection, 1s not really an mstrument of high precision
i the measurzment of lattice parameters, but it has very great utility in work on highly-
fextured on samples which cannor, for whatever reason, be reduced to powder

# Siice both the filin and the specimen surface are flar. no focusing of the diffracted rays
occurs, and the result 1s that the diffraction lines are much broader than 1 normally
desrable for precise measurement of their positions.

—_— a— T T

The chief sources of systematic error are the followang: | e o medd

I Film shrinkage (when photographic emulsions are used)
2 Incomect specimen-to-film distance,
3. Absorption in the specimen

Fasivicn af e filitt In
Tramsmission method

.

So what is pinhole camera? The third one, the pinhole camera used in back reflection is not

really an instrument of the high precision in the measurement of lattice parameters but it has very
great utility in work on highly textures on staples which cannot for whatever reasons be reduced
to powder. Since both of the film and the specimen’s surface are flat no focusing of the diffracted
rays occurs and the result is that the deflection lines are much broader than is normally desirable

for precise measurements of their positions itself.
So in this particular case you can see that the incident beam is going and the some incident beam

is reflecting and some incident beams are transmitted through so the chief sources of estimating
error are the following, film shrinkage when photographic emulsions are used and incorrect
specimen to film distance and third one is the absorption in the specimen itself. So there are
several types of errors when you are measuring the lattice parameter. So in any physical

absorption, two kinds of errors are involved.
(Refer Slide Time: 22:03)



Types of Error in Measuring Lattice Parameter:

| Svstematic Ermor ¢

In any physical observation, iwo kinds of emor are involved:
2. Random Error

*+ Systematic_ervor 1 one which varies i a regular manmer with some particular Spstemitic Ervar
parameter. Futther, a systentatie emor 18 always of the same sign.
A A . e G0 b aliminate " Steapness of
Siatetattc errory in o appioach 2¢i0 as 0 appreaches 90 and may be climinated by use i
et et

of the proper extrapolation finction

* The magnitude of these errors is proportional to the slope of the extrapolation line and,
f these emmors ane small, the line will be quite e

Randdwm Error

* Random errovs ave the ondinary chanee emors ivolved in any difect ebservation s
which may be positive or negative and do not vary in any regular manner with the "- .

positien of the diffrction line -
; . : i N . Scatrer afthe "
* The rardom ervors in o also decrease in magnitude as 0 increases, due essentially w the puiits

show variation of sin 0 with & at lirge angles and are responsible for the deviation of the

various poiiits from the extrapolation line.

il

One is called the systematic error another one is called the random error, so what is systematic
error? Systematic error is one which varies in a regular manner with some particular parameter
further a systematic error is always of the same sign. Systematic error in, A approach 0 as 0
approaches to the 90°, so almost in this particular figure we can get this one and maybe

eliminated by use of the proper extrapolation function over there.
The magnitude of these errors is proportional to the slope of the extrapolation line and if these

errors are small the line will be quiet flat. So in this particular case you can see that the points are
nearly in to the same place they are not too much scattering over there but when you are talking
about the random errors are the ordinary chance errors involved in any direct observations which
may be negative or may be the positive or maybe do not vary in any regular manner with the

positions of the diffraction line.
The random error in A also decreases in magnitude as 0 increases due essentially to the slow

variations of sin O with 0 at large angles and are responsible for that deviation on the various
points from the extrapolation line. In this case you can see that the points are very, very far away
to each other. So now we are going to measure or maybe the methods what are the methods to

measure the error for lattice parameters.
(Refer Slide Time: 23:37)



‘™ Cohen's Method

Methods Used to Measure

i i —— Least Square Method
Errorin Lattice Parameter east Square Metho

—  (Calibration Method

First one is the Cohen’s methods second one is called the Least square method and third one is
called the Calibration method. So when we are going to discuss about the Cohen’s method most

accurate value of the lattice parameter of cubic substance is,
(Refer Slide Time: 23:51)
[ Cohen’s Method:

* Most accurate value of the laitice parameter of a cubic substance is found by plotting the
value of @ caleulated for each reflection agamnst a particular {unction, which depends on
the apparatus used, and extrapolating to 2 value a; at § = 90°.

v Two different things are accomplished by this procedure:
. Systematic ereors are eliminated by selection of the proper extrapolation function,

1 Random errors are reduced using the least-squares method devised by Cohen.

Cubic System:
For a cubic substance being absorbed in a Hull Debye-Scherrer camera,
Ad  Aa

— 2 IR
17 K cos“0 (1)

Found by plotting the value of a calculated for each reflection against a particular function,
which depends on the apparatus used and extrapolating to a value at A0 at 0 is equal to 90°.
There are two different things are accomplished by this procedure, what are those? First one is
called the systematic errors are eliminated by selection of the proper extrapolation function

number one conditions.
Number two is random errors are reduced using the least square methods devised by the Cohen

so that is why it is known as the Cohen’s method. So generally for any cubic system that which
being absorbed in a hull Debye-Scherrer camera A d by d is equal to A A by A is equal to capital

K which is nothing but the constant cos 0 as we have already got on through.
(Refer Slide Time: 24:44)



. Continued...
Bragg'slaw; A =Zdsing

# Squanng Bragg's low and taking logarithmic difterentiation of each side produces,
dsine 2ad
sin'd d
# Substtuting this inie equation (1), the error in sint f varies with f s
Asin® = -2K sin*foosth = Dsinf20 where D is 2 new constan!
o Now the true vaue of sin® 8 for any diffiction e is gven by,
H

'a' r)
sin®8 {true) = E”z(hl LR

. . LA .
Asin®8 = sind (observed) - sin*@ (true) = sind - e [h“ ks !E:I = Dsin'20
1
?

, F ,
sinftl=—(h* + k* + 1) = Dsin'20
“Uuz( )

where € = -1:._1 = [h2 N !E), A= 1”—0 and &= 10sin’20

So in the Bragg’s law A is equal to 2d sin 6, so now we are going to squaring the Bragg’s law and
taking the logarithmic differentiation of each side produces A sin? 0 by sin” 0 is equal to —2 A d
by d. so substituting this equation into two equation 1 the error in sin® 0 varies with the 0 as A
sin? 0 is equal to — 2K sin® 0 cos? 0 which is nothing but is equal to d which is a new constant sin?

0.
So now that true value so here is only the d is — K, so now the true value of sin* 6 for any

diffraction line is given by sin® 0 true value is equal to A* by 4 A0* into A* + k* + L*. So if we
substitute in A sin® 0 is equal to sin® 6 observed — sin® 0 true is equal to sin* 6 — of this one , so
what we will get is equal to capital D sin* 2 0. So sin® 0 is equal to A* by 4 A0* into A* + K* + L?

class D sin® 2 0, so that means sin® 0 is equal to C o + a 8.
So where C is the A* by 4A0%, a is equal to A? + K*=L? Ais equal to d by 10 and & is 10 sin* 2 0.
(Refer Slide Time: 26:31)

Continued.,.

5in‘ = Ca + Ad

¥ The experimental values of sin®0, @, and & are now substituted into above equation for each of the
i hack-reflection lines used in the determination.

# This gives o equations in the unknown constants C and A, and these equations can be solved for the
most probable values of Cand A by the method of least sjuares

# Once €15 found, ay can be caleulated directly from the relation:
A‘:
G
'1II||'J

F The consiant A is related to the amount of systematic error invelved and is consiant for any one film,

but varies shightly from one film to another,
# I lincs from three different wavelengths { Cu Ky, Co Ky, and Cy Kyl are to e used in the analysis,

the data must be “nermalized” 1o any one wavelength by use of the proper multiplving factor,

So from the last equation so we have got sin® 0 is equal to C o + A 3, so the experimental value

so sin’ 0 o and & now substituted into above equations for each of the N back reflection lines in



the determination itself. This gives N equations, in the unknown constant C and A, this equations
can be solved for the most probable values of C and A by the method of least squares which I’

am going to discuss into the next slide.
So once C is found A0 can be calculated directly from the relations which is nothing but capital

C is equal to A* by 4A0%, so if we know the value of C then automatically easily we can calculate
the value of A. so the constant A is related to the amount of systematic error involved and it is
constant for any one film but very slightly from one film to another, if lines from three different
wave lengths copper K a 1, copper K a 2 and copper K B are to be used in the analysis that data

must be normalized to any one wave length by use of the proper multiplying factor.
(Refer Slide Time: 27:53)

2. Least Squares:

# In order to determine the lattice parameter more precisely, we o Froerineulfate
should draw the best [ line through the experimental poinis in * ki aiwes !
the plot and extrapolate ta the paint where cos™@ = 0, . I

# Let the coordinates of a pont (x, y) in the plot be related by the | |, \
equation; ' y=A+ix

y=A+Bx i s Eoaid b Bae
¥
F Tofind the best fir smaight line through all the (x, v) pomts in the !

plot, we must find out the values of A and B
# From cquation value of v cormesponding tox =1, will bey 4+ fir,
F I the experimental value of v corresponding to that poirt is v, then
the ermar . for that point (v, v,/ 1 given by:

E = (A48 -y

Now we are going to discuss about the least square methods. So in order to determine the lattice
parameter more precisely we should draw the best fit line through the experimental points in the
plot and the extrapolate to the point where the cos®0 is equal to 0°. So these green in color all are
the experimental data and our calculated value we have plotted one line. The line should be like

that, that it can satisfy all the points over there.
So let the coordinates of point X and Y in the plot be related by the equations Y is equal to A +

BX, so to find the best fit straight line through all the XY points in the plot we must find out the
values of A and B from equation value of Y corresponding to X is equal 6to X1 will be A+ B
X1. So if the experimental value of Y corresponding to that point is Y1 then the error E1 for that

point X1 Y1 is given by E1 is equal to A=BX1 -Y1.
So therefore the sum of these squares because now we are up to add all this so errors in all the

experimental points is given by.
(Refer Slide Time: 29:10)



Continued...

# Therefors, the sum of the squares of the errors 1 all the expernmental paints s given by
1
2{53) S+ B -y, (A4 B -y 4

# Theory of least squares states thal (e best Gt stright Tine i (e one, which makes the sum of squared emrors a minimum

# The best value of 4 found by dfferentiating above cquation with resgect o4 and then equating the resull 1o

dy (i
%ﬂ{a‘u—!irrh}ﬁm +By -yt =0
which gives, LAFBEx-Fy=lomnn(l])
7 The bestvalue of B ean also be fomd oot ma similar manner
dy(E) .
T= le':,J“"ﬂIL -y]}+ 21’2'{1"1_”1'{ '}']] +..=1
which gives, AVz+ Hzrt —ray =0 (l)

# Reamanging the terms of cquarions (1) and (2] we pet,

DY
Torese)

# The above two cquation can be used 10 get values of A and B for best least square fit.
Some is sort of E* is equal to A+ BX1 — (Y1) + for the X2, Y2 and then up to it will continue up
to XN and YN. So the theory of least squares states that the best fit straight line is the one which
makes the sum of square errors a minimum. The best value of A is found by differentiating above
equations with respect to A and then equating result to 0. So now we are differentiating with

respect to A and then it should be is equal to 0.
So which gives salvation over A + B salvation over X — salvation over Y is equal to the O this is

the number 1 equations and then the best value of B can also be found out in the similar manner
like A salvation over X = B salvation over X* — salvation over XY is equal to 0. This is what
second equation, so now rearranging the terms of equations 1 and 2 we get salvation over Y is

equal to salvation over A + B salvation over X.
Which is nothing but salvation over XY is equal to A, salvation over X + B salvation over X% So

the above two equations can be used to get values of A and B for the best least square method. So
this is the number three and this is the number four equations. This two equations are the best fit
for the least square method, so now we are going to discuss about the calibration methods those

suggested process for determining the lattice parameters.
(Refer Slide Time: 30:50)



3, Calibration Method:

TN /_\

¢ The suggested procedure for determining lattice parameters with high precision is,
| Carefully align the eomponent parts of the instrument in accordance with the
manufacturer's instructions.
2 Adjust the specimen surface to coincide as closely as possible with the
diffractometer axis,
3, Extrapolate the calculated parameters against cos/siné or cosf to a
value of 8 = 90°,

v Extrapolation should be done with least squares fitting of the data and the
extrapolation function chosen to represent the systematic errors,

*"’__\_/__ﬁ“"‘m____x

With high precision is it should be carefully align the component parts of the instrument in the
accordance with the manufactures instructions. Adjust the specimen surface to coincide as
closely as possible with that diffractometer axis and the third one is that extrapolate the
calculated parameter against cos’0 by sin 0 or cos’0 to a value up theta is equal to 90°.
Extrapolation should be done least squares fitting of the data and the extrapolation function

chosen to represent the systematic errors.
So now we have come to the end of this particular lecture and we have summarized the whole

lecture, so in this particular lecture we have discussed about the different type of errors.
(Refer Slide Time: 31:35)

Summarvy:

4)
\[, # Different types of errors (systematic and random errors) which
may oceur in different cameras/methods and their respective
remedies are discussed

# Cohen’s method (usmg extrapolation function and least square
method) is used to get highest precision in calculating the lattice
parameter ffom observed data

In systematic and the random errors which may occur in different cameras methods and the
respective remedies also we have discussed elaborately. Cohen’s method we have used which is
nothing but the using the extrapolation functions and the least square methods is used to get the

highest precision in calculating the lattice parameter from the observed data, Thank You.
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