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Hello everyone welcome to this lecture we have been looking at creep deformation in the last 

two lectures, of different class of materials and different mechanisms which governs this 

behavior. Today we will focus our attention to creep in polymeric materials. It is also you know 

gives an idea about, what happens to the non-crytalline or semi-crytalline materials during creep 

deformation. So in general polymers show a much larger dependence on time and temperature 

than the mls and ceramics do. That is polymer show creep effects at much lower stresses and 

temperatures this stems from their peak van der Waals interchain forces. So we have a good 

background to realize all this effects because we looked at polymeric deformation in tensile 

mode. Also we briefly discussed about the polymeric structure and we also know what; is van 

der Waals force all that it is a secondary bond? 

So all this thing background will have a profound influence on their creep deformation that is 

what it is? So as compared to ml and ceramics these materials exhibit a high large dependence 



on time and temperature. We also looked at this time dependency of, you know these materials in 

an elastic region that also we have looked at it. In polymers time dependent deformation 

becomes important even at room temperature. 

Two terms used to describe the time dependent behavior of polymers one is creep other is stress 

relaxation. In creep one applies constant stress and the strain response is measured as a function 

of time in stress relaxation is one applies constant strain and response is a decrease in stress as a 

function of time. So these two terms like you know a creep and stress relaxation both are 

measured in these polymeric materials. We will just look at them and how their behavior is 

understood that is also we will discuss in the lecture. 

 

For a glassy or viscoelastic polymer subjected to a constant stress there is an initial elastic strain 

recovery followed by slow time dependent recovery. So that we are now talking about two terms 

one is initial elastic strain recovery that is instantaneous or immediate, followed by a time 

dependent recovery. So, we have to distinguish these things and then we look at the total 

behavior.  
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So in order to describe the creep deformation, people have thought of several models. So, one of 

the popular model which is most of the textbooks prescribes is this kind of you know a spring 

dashpot analogs. A spring is there and a dashpot is there with a viscous fluid and piston kind of a 

thing which is attached to a spring and then you apply a force like this and the one is fixed as it 

shown here that is called the spring dashpot setup. 



 

This is in a series that means the dashpot or spring is connected in a series and in figure (b), it is 

connected through a parallel. So now you apply at force from this end and then try to look at, 

what kind of stress or a strain experience by the dashpot as well as the spring. So these two 

analogs are compared with the polymeric materials we will see how it is quite interesting but 

then how much it is relevant to in I mean in real time polymeric deformation that is what is we 

have to look at it.  

This viscoelastic response may be model as the spring dashpot in series which is also called 

Maxwell model very popularly denoted as Maxwell model. In parallel it is called white model   

so it is instead of spring and dashpot in series and parallel it is also referred as Maxwell and 

white model as shown in this figure. An application of this stress to this system results in a strain 

 in the system this strain is the sum of two contribution and we can write  =  1 +  2 where  1 is 

strain in the spring and  2 is the strain in the dashpot. 

So, the strain experience by the spring and strain experience the dashpot can be additive because 

it is in the series. So  =  1 total strain =  1 +  2. The stresses in the spring or the dashpot for 

identical because the two are in series. So, strain is additive but the stress is equal, identical they 

are not additive here so this we have to understand for this model. Then we can write the 

following relationship for an elastic and viscous case. 

So this is basic Young’s modulus equations stress is proportional to strain and  = e  that kind 

of equation you can rewrite this equation like this. For a viscous flow because this is a stress is 

written like this  =(d 2/dt) this is a gradient. This is so basics relations we have already seen it 

so we can make use of this to analyses this stress strain relationship. 

From the above equation we can rewrite those like, d /d t = (d/d t) + (d2/d t) which is can be 

rewritten as (1/E) (d/dt) from this relation plus  () from this relation. So this we are 

replacing with these two terms which is taken from the basic equations. 
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So now note that the series or a Maxwell model does not correctly predict the behavior of a 

viscoelastic material under constant stress or a creep condition. Where  is equal to 0 because in 

this case the d/dt is predicted by this Maxwell model is equal to 0/. That is the Maxwell 

model for a creep, a constant stress condition predicts that the strain increases linearly with time 

that is shown in this figure.  

But most polymers however the d /d t or the de/d t increase with time this is not the real time 

case. So, we will see, what is that Maxwell model can actually predict the actual model is more 

realistic in the case of a stress relaxation test. It is not predicting the creep behavior but in the 

stress relaxation test you can predict how? During which we impose a constant strain which is  

is equal to  0 then d /d t = 0. 

 

So, in the previous case it is increasing but here it is 0 under these conditions equation can be 

written as that is d /dt = 0 which is equal to (1/E) (d /d t) + /,  this equation it is there in the 

previous slide and then we can rewrite them into this form that is d /  = -(E/) d t. So we can 

now integrate this and then we get an expression for  . 

So, the quantity /E is referred to us as the relaxation time  so this relaxation time we have 

already looked at it in the inelasticity chapter we discussed it and there also we looked at how 

this term comes when we discuss viscoelastic behavior same parameter here. And we can rewrite 

this equation now replacing this /E as , so this is a very standard expression 

now. Now we can see whether this is going to be useful.  



 

So what I have shown in this plot is the stress versus time and the stress was I mean strain versus 

time and the stress versus time plot for the both the models and whichever are obeying the actual 

behavior that we can discuss then and there. Now we just said that Maxwell model does not 

predict the strain versus time behavior. On the other hand stress relaxation behavior it is 

predicting so that is what this equation shows. 

So, equation says that the stress decays exponentially with time as shown in the figure b. So the 

stress versus time, Maxwell plot it is almost, it is exponential decay stress decay is shown here. 

So this model is valid for the stress relaxation behavior this is quite reasonable for many 

polymers however the process of stress relaxation does not go on infinitely in real time material. 

So the model predicts that it goes like this.  

 

So if it is not you know touching the time axis then it is infinite right. So which is not the case in 

the most of the real time material so, that is one drawback with this Maxwell model. 
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In another model called Voigt model the spring and dashboard are arranged in parallel which is 

shown in the figure. This means that the strains in the 2 components are identical so there it was 

a stress was identical here the strain is identical or strains are identical there it is stress. So we 

can rewrite this and the stresses in the two components add to give the stress on the system that 

is in a spring dashpot connected in parallel the stress is additive so  is equal to 1+ 2, that is 

what the Voigt model is assumes. 
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So we can rewrite dot equation like we have written in the previous case it is a very simple 

substitution you can just look at the previous slide it is the same. So we can rewrite these d/d t = 

(0 / ) - E (/). Let us now, examine the predictions of the Vogit model for a creep or a 

constant stress loading and for stress relaxation. For the constant stress situation  is equal to 0 

then equation, has become d /d t + E (/) = 0/ so this is what it is.  

 

If you put this condition this differential equation has the solution like this form. So whether that 

is predicting or not that we have to see remember that the quantity /E, is a relaxation time  we 

can replace that. We find that the variation in strain with time at a constant stress is given by  = 

(0/E) [1 – exp(- t/)  so this is the final expression. So what is this expression say now? 
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This relationship shown in the figure we will go back to the figure now the prediction of Voigt 

model is quite realistic because when  tends to /E as t tend to infinity this what that plot also 

predicts what is that plot? Now we will go back to this plot. 

(Refer Slide Time: 14:23) 



 

So this is the plot we are talking about. So the Voigt model predicts. So for a constant stress 

relaxation case we have an imposed constant strain that is  is equal to 0 and therefore d /d t = 

0. So for the constant stress the Voigt model predicts quite realistic behavior of polymer for the 

stress relaxation case. We have to impose this condition that is d/dt = 0 then Voigt model 

predicts that / = E0 /, which is a linear behavior right.  

Whether, this is okay or not this linear elastic, response over shown in this figure do not conform 

to reality. So, these two models are you know predicting the and only one condition either the 

stress relaxation or the constant stress or creep these are the two models but they predict only 

under either one of them in the both the deformation cases. So, what is shown in this plot the 

molecular weight of a polymer can affect its creep behavior.  

 

So the strain versus time plot you can see that with increasing the molecular weight it is having 

some influence on the creep behavior right. The strain response of the polymer as a function of 

time that is strain as a function of time is shown in the figure. also shown the effect of molecular 

so strain is here it is a constant stress and then you can see the strain and this is a strain versus 

time so that is what it shown here.  

 

The effect of increasing the degree of cross linking is in the same direction as that of increase in 

the molecular weight. So the degree of cross linking has the same effect like the molecular 

weight increase so both are interconnected anyway. Both tend to promote secondary bonding 



between chains and thus make the polymer more creep resistant. So the higher molecular weight 

polymer will have better creep resistant so that is what this, I mean these models explain. 
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Compared to glassy polymers semi-crystalline polymers tend to be more creep resistance or 

creeprsistent. Polymers containing aromatic rings in the chain are more creep resistant. Both 

increased crystallinity and incorporation of rigid rings add to the thermal stability and thus to 

creep resistance of a polymer so these are some general characteristics. In a constant stress test of 

a kind just described a parameter of interest is creep compliance J.  

 

What is compliance? Compliance is inverse of E, that means ratio of strain to stress. This is the 

ratio of strain to stress since the strain will be a function of time the complements will also be a 

function of time thus you can write like j(t) = (t)/0 so, this parameter is called creep 

compliance. From the above equations we can use this and then the previous equation we can 

rewrite this equation for the creep components which j(t) = (t)/0 = (1/E)[1- exp(-t/).  

So, what is now shown in this figure is the creep compliance are plotted versus time but in a log-

log scale. You can see that it is very interesting plots, we will try to explain this series of creep 

compliances versus time both on logarithmic scales over a range of temperatures. So for a 

different temperature range of temperatures, the creep compliance curves are drawn here and one 

can build a master curve from these kinds of experiments and this is a master curve one can build 

it from that.  

 



So how do you build this master curve? the individual plots in a can be superimposed by an 

horizontal shifting (along the log time axis) by an amount log aT, to obtain a master curve 

corresponding to a reference temperature T g of a polymer. You see this creep compliance versus 

log time has this kind of a variation with the reference temperature Tg. In semi crystalline or 

glassy material or dimmers T g is a very important temperature. 

 

Like our recrystallization behavior right, in metals we talk about our ceramics we talk about right 

we were also talking about critical temperatures, recrystallization temperature right. So here in 

polymeric material this is T g is the reference temperature. So but these plots are one over the 

other to generate this kind of a master plot to have an overall understanding that is we need some 

a constant that is called you know shifting constant.  A shifting constant a T is required, so if you 

shift each of this, curve to by this constant a T then you get this kind of master curve. What does 

this master curve show? It shows that the polymeric deformation as a function of time but it will 

now show that different regions like score elastic rubbery pladeu and then completely viscous 

flow. So these kinds of mechanisms all the mechanisms are nicely revealed if you do this a 

master curve construction. 
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So we will see little more on this master curve. A very useful principle called the time 

temperature superposition, allows us to take the data at one temperature and superimpose them 

on data taken at another temperature by shift along the log time axis. So this experiment is done 



to generate these kinds of a master curve. So one of the, I mean models, people have tried to plot 

this relaxation modulus versus time.  

 

And then you generate these kinds of curve and then shift them by the method just look at it and 

you plot them then you get this master curve like this. We will look at it how there are particular 

model which are used to obtain this the constant shifting constant. This principle is of great 

practical use in as much as obtaining a data over a full range of pre-compliance or stress 

relaxation behavior which can involve even year’s.  

 

So which is very important because when you say stress relaxation that time is you know quite 

large depending upon the material what kind of material we are looking at it. So the stress 

relaxation in the context of stress relaxation behavior this relaxation modulus is also very 

important parameter. The principle allows one to shift data taken over a short time spans but at 

different temperatures to obtain a master curve that covers long time spans.  

 

So you take a data from short time and then extrapolate to a long time so for that Williams, 

Landel and Ferry found that the logarithm of a T that is a time shift factor follows a simple 

expression like this log a T = -C 1 times T - T s divided by C 2 + T - T s. Where C 1 and C 2 are 

constants and T s is a reference temperature for a given polymer. If we take the reference 

temperature to be the glass the transition temperature is T g then C 1 is 17.5 and C 2 is 52K 

something like that.  

 

So if the reference temperature is Ts is taken to be about 50 degree above T g then C 1 is 20.4 and 

C2 is 101.6 K. So, these are some of the examples how this you know time shift factor is being 

adopted to arrive at a master curve in a relaxation modulus versus time clock. So what is shown 

here in C in continuation with the previous slide is the shift along the time scale to produce 

master curve modulus versus time. The bottom one is experimentally determined shift factor so 

we can one can also find the shift factor experimentally. 
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So now we will come to one more important point the Voigt model is used to explain the stress 

relaxation behavior of the polymer. That is what we have just seen that Voigt model is useful but 

it was not explained in the other parameter. We impose a constant strain 0 and follow the drop 

in stress as a function of time. So stress relaxation means what you impose a constant strain and 

allow the material to relax and observe the stress that is stress relaxation.  

 

So instead of compliance term we now have a stress relaxation modulus which is given by E(t) 

which is equal to  (t)/0. In the case of stress relaxation also one can obtain a master curve as 

shown in the figure. So this is a stress relaxation curve typical stress relaxation at a constant 

input strain  naught results in a drop in stress  as a function of t and the master curve is shown 

here typical master curve. Log E versus log t so this is relaxation modulus. A master curve 

obtained in the case of stress relaxation showing the variation in the reduced modulus as a 

function of time, also shown is the effect of cross linking and molecular weight. So these plots 

are very interesting because they have a complete practical relevance we are talking about 

reduced modulus. That means as a function of as the time passed by the more the modulus 

relaxed so it is called reduced models. So, this is also function of molecular weight and then 

cross linking so it is completely based upon the structural information structural aspects of the 

polymeric material that is what we have to understand. Stress relaxation polymer is of great 

practical significance when the polymers are used in application involving gaskets and seeds this 

is very interesting point you have to realize and this in fact we observe in the day-to-day life 

gaskets and seals.  



 

They are after some time they will lose their function functionality for example the gasket in the 

pressure cooker the seals we use it in most of the know simple boxes now people use with seals 

you know they after some time that seal will become loose or it will brittle or it becomes first it 

will become loose that means it has completely relaxed. At times this effect can be exploited 

beneficially how can, we exploit this stress relaxation that is another important and applied in the 

reality. For example, in a situation where the residual stresses are not desirable we can 

incorporate a polymer to undergo easy stress relaxation in response to residual stresses so this is 

very important. So if you have an issue with the residual stresses then incorporating the polymer 

and then allow them to relax that will take care of the effect of residual stress so this is also very 

interesting application to realize the stress relaxation behavior of polymers. 


