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Hello, I am Professor S. Sankaran in the Department of Metallurgical and Materials Engineering. 

For the particle case  coherent depends on the difference between the particle (ap) and matrix (am) 

lattice parameters. So, ap is lattice parameter particle a m is the lattice parameter matrix as shown 

in the figure you can write like this  coh = (ap - am) / am. We know that when the particle lattice 

parameter is greater than that of the matrix the particle is in the state of compression whereas, 

when the am is greater than ap the particle is in tension. 

 This is quite natural. However, both situations give rise to material strengthening. Since the 

increment in strength depends upon the absolute value of  coherent .That is why, we said in the 

previous expression mod of  coherent that is straight forward. We will look at the modulus 

hardening in a deforming particle type when the dislocation enters the particle having a shear 

that of the matrix the dislocation line tension ( Gb
2
 / 2) is altered. The physics here are again 

analogous to the solid solution strengthening. 

 



Since we have already looked at this modulus effect and so on this is not anything new, but only 

thing is we are bringing that idea to the deformable particle concept. The maximum change in 

the dislocation self energy that is when the dislocation is halfway through the particle is b
2
r( G p – 

G m ), the distance over which the energy changes is particle radius, thus the force proportional to 

the gradient in energy is on the order of F = b
2
(G p – G m ) = Gb

2
G p  G p. 

 

Where on far right side of the equation G is taken as a matrix shear modulus and the parameter 

 G p is (G p – G m )/ G m is akin to that parameter  G  used to characterize a model as holding 

the solid section. So, it is similar to what we have already seen in the models strengthening. So, 

nothing much to discuss here is all similar ideas and you are familiar with all this already.  
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So, this is a schematic which shows that the deformable nature, so the dislocation line is there 

and it is moving in the matrix and this is a precipitate and the precipitate experiencing the 

dislocation entry and this is the line tension of the dislocation is altered and it is maximum when 

it goes to the distance radius here for the change in the line segment energy is driven by 

 

 that 2r is the maximum it could get across. So, that is what is given here.  

So, the view looking down on the slip plane as the straight dislocation enters a particle having a 

radius r on the plane. The dislocation line tension is changed when it enters a particle; the 

maximum dislocation length affected is the particle diameter that is what is shown here it is it 



can travel from here to here. So, 2r the line tension change takes place gradually over the 

distance equal to r. So, the maximum changes can happen. The change in energy takes place over 

a distance less than r, this can be considered by substituting b for r to either revise the equation.  

So, we can also consider you know the change in energy in the intermediate range, where we can 

use b instead of r. So, F = br( G p – G m) = G p r  G p. So, the associated increase in the shear 

stress is obtained by dividing F / bL. see this F / bL also we know this is a standard equation that 

force you know maximum force we are trying to find. So,  G p = Gr  G p / L  which is 

approximately equal to1/2 G f  G p. 

Where f = 2r / L  f equal to particle volume fraction approximate for a straight dislocation, we 

are simply substituting this 2r / L in this expression and putting it here and the details of the 

correct treatment are complex again, I am telling you we are only looking at the semi 

quantitative relations and approximate relations, the approximate result to the early stages of 

precipitation for modulus hardening is  G p = 0.01 G G p ^3 / 2) ( fr / b)^1/2. 

 

Coherency and modulus hardening both vary with the mismatch parameter . This is what is 

important idea, so the G p or the  G p here and then this  turn comes in all the coherency 

hardening as well as modulus hardening it comes there. And the  the parameter  G p ^3 / 2) and 

(fr/b)^1/2, these two things are the parameters to look at. The values of the numerical 

proportionality constant in the equations are different. For the modulus and coherency that is 

understandable. 
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And the next one is chemical strengthening in this same domain, it is little fast because they are 

similar idea, but just subtle differences are there. That is why just rushing through but if you look 

at the equation, they are all similar equations; the parameters are all similar except the core 

differences only have to identify. So, the next one is chemical strengthening, what is chemical 

strengthening?  

Same idea the dislocation is approaching a particle then what happens? It enters here and then 

creates a new surface this is spherical particle and then what dislocation enter the Burgers vector 

b and it creates the step here. So, that means a new surface is created. So, it is within the particle 

and an offset b of a portion of the upper part of the particle with respect to the lower part 

accompanies the dislocation entry.  

 

And then once it comes out of this particle then it creates another step is equal to b. A similar 

offset is effected when the dislocation exists the particle the complete transit is accompanied by 

the creation of a matrix precipitate surface area of approximate magnitude of 2 rb this is very 

simple right. So, 2rb that surface area it has been newly generated because of the edge 

dislocation enter and then exit the particle.  

 

So, how does this alter the energy that is what we are going to see, we are going to bring in this 

surface energy into the force when a dislocation passes through the particle an additional 

particles matrix interfaces are as shown in the figure, since there is a surface energy associated 



with such an interface, what must be done by the process. So, the figure shows the interface 

surface areas created both when the dislocation enters the particle and also exits.  

 

So, the maximum force required to push the dislocation through this particle is the maximum 

value of dU / dx of the figure is approximately going by F max = r  s b /b = r  s, so  s is the 

surface energy 
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This is the schematic which shows the nice idea, how the surface energy increases the moment 

the dislocation enters the particle which creates the first offset in the front b the surface energy 

increases to this level. This r b s and then it travels inside and again it exists creates another 

surface again it creates r b s. This is 2r is a diameter of the particle this is nicely shown here. 

So, the energy increase occurs over the distance about equal to the slip vector b.  

 

Thus the force required to produce increase that is proportional to the slope of the energy 

distance curve is rs. So, we can just simply substitute this the associated increase in the flow 

stress is  chemical here we are not seeing a plane, it is purely a chemical hardening component is 

given by F max / bL, which is nothing but rs / bL, L is a effectives particle spacing, if the 

dislocation remains straight. 

 



We can substitute to 2r / L that is equal to f and then we can rewrite this equation like 

 chemical hardening     (f s )/ 2b, the simplified treatment suffers from shortcomings similar to 

those of the simplified treatment of modulus hardening. Again, I told you all these semi 

quantitative relations will give you some idea about the very specific change in the each of the 

mechanisms, the parameters which contributes to the applied stress.  

 

That is all we have to look at it what changes in modulus hardening no coherency hardening and 

you know chemical hardening what are the new parameters coming to the force balance equation 

that is all you have to look for.  
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So, the final expression for this chemical analysis is given like this 

 

So, we see that the chemicals strengthening depending on parameters similar to those describing 

the coherency and modulus hardening, they are all same here you are simply putting  chemical 

instead of  modulus you know coherence.  

 

One important point the strength increase varies with and then there is another parameter 

 for which strength increases with the 3 / 2 power. In this sense,  is analogous to both  G p 



and  coherence and this is why we have defined  as is equal to  chemical in that equation. So, this 

is all these three equations simple equations, though it looks you know, similar but it gives the it 

brings out that certain differences, the what way each mechanisms contributes to the  that is the 

shear stress the flow stress directly.  

 

There are other ways of surface energy or other ways of surface energy can contribute to particle 

hardening, they are two prominent cases are stacking faults strengthening the order 

strengthening. So, they are also related to the surface energy term. They are two prominent cases 

stacking fault strengthening and order strengthening they are very important. If the stacking fault 

energies of the particle and the matrix differ, dislocation motion is impeded.  

 

Because the; equilibrium separation of the partial dislocation is different in the matrix and 

particle. So, now, whatever we have studied in the dislocation dynamics stacking fault and the 

partial when the partials are stable and when they are not stable all these ideas will come into 

plane and it is very hardening know. So, we are talking about the stacking fault energy the 

difference between particles and the matrix and its consequences on the strengthening 

mechanisms. 

 


