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Hello I am Professor S. Sankaran in the Department of Metallurgical and Materials 

Engineering. So, how do we appreciate this how do we explain this how to visualize this 

restrain or constraint. Let us now consider a bicrystal A and B there are only two crystal 

joined together and this is the coordinate of this diagram and then this bicrystal being 

subjected to tensile load tensile deformation of a bicrystal. So, the crystals A and B are of 

same material but oriented differently with respect to tensile axis. 

 

So let us assume this dilational and shear strains must be matched along the interface that is 

xz plane between the crystals. So, we were talking about grain boundary displacement match. 

So, we are now considering this a bicrystal so this xz plane is an interface. So, here dilational 

and shear strains must be matched, so how do we visualize this? This constraint increases the 

flow stress of a bicrystal in comparison to that of the single crystal so that is quite obvious if 

the single crystal is being deformed.  

 

Then this constraint the additional constraint would not have arised each crystal can be 

considered to have a six strain components, three tensile that is εx, εy and εz and three shear 

γxy, γxz, γyz components. So, we understand all these shear component, strain component we 



have sufficient background for that. So, with the coordinates of the schematic of bicrystal the 

following conditions must be satisfied at the grain boundary in order to provide material 

continuity across it.  

 

So what are those conditions? The 

 

 

 

so that is the compatibility condition, where the superscripts A and B designate the individual 

crystals of the bicrystal. What is the problem here now? Since one grain has a higher value of 

cosΦ and cosλ what is this?  

 

This is nothing but schmid factor than the other the constraints described by the above 

equation the restrict of the deformation of this more favourably oriented grain and results in a 

higher yield stress and a greater work hardening response of de bicrystal. So it is now very 

clear now, even though it is just two crystals joined together their orientation with respect to 

the tensile axis which is given by a parameter schmid factor.  

 

Whichever the grain will have highest schmid factor will undergo the slip first as compared 

to the other. So, that is going to cause more strain or more stress, higher yield stress to sustain 

the plastic deformation or it will exhibit a greater work hardening response. So, this is one 

nice example to appreciate what is this grain boundary constraint.  
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So in a polycrystalline aggregate, the grain boundary constraints are more restrictive than 

those for a bicrystal, and thus the level of stress strain curve for a polycrystal is 

correspondingly higher. So now we expect what kind of stress strain response for a single 

crystal and polycrystal so we just go through some couple of examples. The room 

temperature, tensile stress strain curves for single crystal, bicrystals and polycrystals of 

niobium and sodium chloride is shown here.  

 

So, this is a very nice I illustration mean experimental results or illustrations what we see 

here is the niobium single crystal and niobium bicrystals and polycrystal and what you 

observe is the bicrystal exhibits much higher strength but the polycrystal exhibits 

significantly higher stress strain response. Of course you see that the strength goes up then 

the strain values comes down those are all different idea. 

 

But then the here the focus is on the high flow stress arises from the compatibility issues or 

grain boundary constraints in the polycrystals that is the focus here. So, it clearly shows that 

idea even in the you know brittle material this is metal and this is a kind of ionic solid. So, it 

also clearly shows that a single crystal sustained curve though there is no significant work 

hardening or something. 

 

But if you look at the polycrystal the flow stress is quite steep here as compared to single 

crystal and bicrystal so that is the illustration here. So, the level of flow stress of a bicrystal 

depends on the relative misorientation of the two crystals this is very demonstrative.  

(Refer Slide Time: 06:59) 



 
So, each grain in a polycrystal has three shear and tensile components of strain as described 

above for a bicrystal. However out of these six only five of these are independent, because 

the dilational strains are related through the constant volume condition what is that? That is εx 

+ εy + εz = 0 of the plastic deformation. Plastic deformation results in a constant volume. So, 

this there is a condition there so because of this though we see the six components and the out 

of six only five of them are independent.  

 

It can be shown that five independent slip systems are required to meet the boundary 

compatibility requirements these arise from the five independent component of the strain. So, 

now, we are bringing another terminology or I would say fundamental requirement for plastic 

flow five independent slip systems are required to meet boundary compatibility requirements 

how do we understand this?  

 

That is matching of displacement across the boundary necessitates the operation of five 

independent slip systems at least in the vicinity of the grain boundaries in each crystal of the 

aggregate very important. So, in order to you know proceed with the deformation without 

creating a void or cracks the matching of displacement across the boundary is necessary and 

in order to do that, at least five independent slip systems.  

 

In the each grain at least in the vicinity of the grain boundaries are must that is the idea 

otherwise the plastic deformation will proceed with some effects. So, now we will 

concentrate on the term independent slip systems, what is an independent slip systems? The 



number of independent slip systems related to but not equal to that number of geometrical 

slip systems.  

 

So when we say that you know the six components three tensile, three shear they are all 

geometrical slip systems but not necessarily have independent slip systems that is valid for all 

the crystal systems we can just take some examples to understand this will let us proceed an 

independent slip system is one for which slip displacements on it cannot be duplicated by a 

combination of displacements on other slip systems. How do we understand this? We will 

take some example. 
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The concept can be illustrated by considering a basal slip in a hexagonal close packed 

structure. So, let us take this hexagonal close packed structures where three geometrically 

distinct slip systems three non-parallel close packed directions , ,  within the basal 

plane in this structure so, these three geometrically distinct slip systems are taken. However, 

an arbitrary displacement in the positive  direction can be duplicated by a combination of 

equal slip in the negative  and  directions. So, what does it mean?  

 

Suppose if I travel from this point centre along this a3 vector by 2 units, 1, 2 I am traveling 

this and then this is my end point. I can also arrive at this point by travelling the negative you 

know directions of a2 and a1 how do I do that? So, if I choose to travel from this end and this 

direction is negative of a1 so 1, 2 I am reaching here if I use a2 that is this and this direction is 

negative.  

 



So, from here I will go 1, 2 so, I can get see this is what it is shown it cannot be now I am 

duplicating a3 by combination of a1 and a2 so this is not considered independent. Thus the 

number of independent slip systems for hexagonal basal plane slip is two and not three. So, 

this is a nice example to understand this.  
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The higher flow stresses of polycrystals are also due to geometrical consideration relating to 

the differing orientations of the individual crystals of aggregate with respect to tensile axis. 

Each crystal has its own characteristic value of the schmid factor and those with the lowest 

tend to deform last in a tensile test the highest will deform first, the lowest will deform last 

that this schmid factor this is one straight forward thumb rule.  

 

So, it is reasonable that the tensile yield strength σy relates to τCRSS by geometrical relation 

existing between τ and σ. And thus in analogy of the above equation we can write  

 

the equation which is considered here is the schmid law where  is a suitable average for the 

polycrystal. Many of the dislocations accumulated during plastic flow result from the 

multiplication process.  

 

Since the dislocation encounters leading to multiplication or chance encounters the 

dislocation accumulated by such process are called statistically stored dislocations. So, now 

we are now classifying the kind of dislocation we get generated during plastic deformation 

before even I go to this description, I just want to add few more points to this schmid factor 

idea.  



 

So, we say that the highest slip system are the grains in a polycrstal the grain which exhibits 

highest schmid factor that means that grain is most favourably oriented for this slip, that is 

the physical mean but that is not alone the factor, how the you know the other grains are 

going to facilitate for example, you assume that the highest schmid factor grain starts 

deforming first in a polycrystalline microstructure and as the deformation proceeds if there is 

no guarantee that the grain which started deforming.  

 

In the first will continue to deform till the end in the same manner, at least the same rate or I 

would say that this the accumulation of the strain inside that individual grain it is not going to 

be the same rate till the fracture or the end of this plastic deformation. So, what is that I am 

trying to say though we say that the grain which has the highest schmid factor will start 

yielding first, but as the deformation proceeds you do not know what will happen to that 

strain some other they may start deforming much faster than the screen as the deformation 

proceeds.  

 

So, it is not just a characteristic schmid factor alone is going to decide the strain accumulation 

across the gauge length it is a characteristic geometrical constraint each grain experiences 

during plastic deformation that decides the overall strain accumulation across the gauge 

length. So, this is one point you have to remember very important point. So, because such a 

close observations in terms of strain measurements are all just being done now and there are 

evidences that these kinds of deformation behaviour is happening.  

 

So, it is not just schmid factor there are some other factors at least I would consider to call 

them as characteristic geometrical constraints during the plastic deformation. Now, we move 

on to this classification of dislocation what are we saying here? As the deformation proceeds 

the dislocation density multiplies so, that means the dislocation, dislocation interaction also 

the probability of the dislocation interacting with other dislocation is also increasing.  

 

So, this is by chance that means, when the dislocation is meeting the other dislocation so 

frequently because the dislocation density is high. So, this by that process it is also 

multiplying so it is by chance it is getting generated that is why it is called statistically stored 

dislocation some plastic deformation is accompanied by internal plastic strain gradients. 



Suppose, if the plastic deformation also accompanies or just generates a strain gradient inside 

the material then what type of dislocation it will generate?  

 

When such as gradients are present geometrically necessary dislocations are accumulated in 

addition to the statistically formed ones so this is very interesting you have to pay a little 

more attention to grasp this idea. So, you can ask how this you know, strain gradients are not 

created in the general plastic deformation that is not the question. The question is how the 

dislocations are generated, that is the question.  
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So we will see some nice way of illustration suppose you take this single crystal of this 

dimension measuring length l and the thickness t and it is being subjected to plastic bending 

like this is what is described here, the plastic bending of the bar of length l and thickness t to 

a radius of curvature r, this is the radius of curvature r produces a tensile strain on the outer 

and the compressive strain on the inner surface.  

 

So since it is a bar so inside it is creating a compressive strain and outer it is a tensile strength 

what are the other quantities we can look at it. So since the length is extended from l + δl and 

here the length is contracted from l to l - δl that means, there are greater number of atomic 

planes that is (l + δl)/b where b is inter atomic spacing. So this is theoretically possible when 

the length is increasing that means, you can greater number of atomic planes on the outer 

surface than in the inner surface which is nothing but (l – δl)/b.  

 



This strain gradient is accommodated by introduction of 2δl/b geometrically necessary 

dislocation into the crystal. So, that is what is shown here suppose, the increase in the length 

of the outer surface and the decrease in the length of inner surface that can be accommodated 

by introduction of the edge dislocation of I mean similar sign here. So this kind of extension 

of the length is possible by introducing the dislocation like this on the several planes in the 

crystal.  

 

So we will look at it a little more closely how do we understand this on bending the bar to 

radius of curvature r the upper portion of the crystal undergoes tensile deformation that is its 

length is increased from l, which is also rƟ, you can look at this diagram it is easy to 

understand 2l + δl which is also (r + t/2)Ɵ, you see that this is a t and we are saying that we 

are dividing this upper and inner so it is t/2 with the δl being the positive and it has got the 

magnitude of tƟ/2.  

 

So, δl has the magnitude of tƟ/2. Conversely the inner circumference undergoes compression 

with a negative length change of tƟ/2 this is positive change, this is negative change. Thus, 

the strain gradient accompanies the bending and the magnitude of the strain gradient is the 

strain difference between the two surfaces. So, let us understand this so, strain difference is 1 

+ δl – (1 – δl) so that will become you know 2δl/l is the strain. 

 

And this is a difference in the two surfaces and divided by the distance over which the 

gradient exists that is the gradient exists from the inner surface to the outer surface that is 

thickness is t. So, we are calculating not just difference, but we are calculating this strain 

gradient. So, the strain gradient is simply you can visualize this 2δl/lt which is equal to Ɵ/l 

because you substitute this tƟ/2 here so, then you get Ɵ/l which is nothing but r-1.  

 

So, we are defining this rƟ so, it is r-1 so strain gradient is r-1 so what do you mean by this? 

What is strain gradient, the rate of change of strain within the volume of the plastic 

deformation the volume over which the plastic deformation takes place where the rate of 

change of strain is happening this way. So, that is how you have to understand the strain 

gradient.  
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So now the number of crystal planes on the tension surface is the surface length divided by 

the interatomic spacing b, b is also the Burgers vectors magnitude sometimes we can take it 

like that, likewise the number of atomic planes on the compressed surfaces (l – δl)/b, the 

difference in the number of atomic planes between the surfaces accommodated by 

introduction of edge dislocation.  

 

So, you just understand the extra half planes you are introducing all over the place in the 

outer surface obviously, you know the length will increase. So, this kind of dislocations are 

called geometrically necessary dislocation see this illustration very nicely fit to the context. 

So to keep up the geometry to the additional length we are introducing the dislocation into the 

crystal system. So, that is why it is called the geometrically necessary dislocation.  

 

Their number is 2δl/b and the density ρG is the number divided by the crystal surface lt. So 

the surface is lt because the length l and width t. Hence,  

 

which is nothing but (rb)-1 we can also relate that equal to strain gradient/b please very 

important point here note that if there were no strain gradient, no geometrical dislocations 

would be present that is quite obvious.  

 

There is no strain gradient we would not have introduced you know edge dislocation on the 

top surface if it is a perfect circle I mean a perfect strip of a single crystal there is no strain 

gradient and strain gradient we have produced by bending it and then doing that we had to 



introduce an additional dislocation to accommodate this bending plastic deformation. So this 

is conceived idea to understand this concept.  

 

Moreover, we emphasize that geometrical dislocations present are in addition to those stored 

statistically so, that the total dislocation density is ρs + ρG.  
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So the precise density of GNDs depends on the orientation of the slip plane and the direction 

with respect to the bending axis. So, this is another important idea about this GNDs let us 

look at that what is that? The figure illustrates the situation where the bending can be 

accomplished without the introduction of the GNDs. See, previously we said that additional 

edge dislocations are inserted to accommodate the plastic deformation that is how the length 

of the outer surface got increased from l to l + δl.  

 

But now, we are seeing we can also do this without introducing GNDs how do we understand 

this? The single crystal shown here can be bent without the need of introducing geometrical 

dislocation into it. This is because the slip direction is normal to the axis of bending and the 

slip plane normal is parallel to this axis. So what is this axis? The axis is this, through which 

we are bending see this is a slip direction and the normal to the slip plane are also parallel to 

this and slip direction is perpendicular to this axis.  

 

And that is why they each slip plane is you know you can see that each one is a glide plane so 

it simply glides and then it produces the slip over and there is no gradient. Thus the change in 

shape is accompanied solely by a dislocation motion and no plastic strain gradient exists 



between the sample surfaces. So, that is why it is important to understand that GND density 

depends upon the orientation of the slip plane and direction with respect to the bending axis 

or any plastic deformation orientation.  

 

Ordinary dislocation glide accommodates the shape change for this situation thus for a 

general case the geometrically necessary dislocation density is expressed as ρG = α.(strain 

gradient/b), where α is a constant of order unity. So this is one way of understanding this 

strain gradient. 
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How this concept is useful in a general case in a polycrystalline deformation how this concept 

is useful. So, if you look at this schematic here the image is a polycrystalline microstructure 

which has been subjected to tensile deformation the average grain diameter is d and what is 

shown here is you can see that as the deformation proceeds you are able to see that the 

creation of voids and the overlaps of the strain to the other this situation shown here is you 

know completely unconstrained deformation.  

 

So that is what we are saying here an alternative way of viewing the constraints that 

individual crystals place on each other during polycrystalline deformation is provided these 

four figures. The figure shows that geometrically necessary dislocations can provide 

compatibility of displacements between adjacent grains. So, what happens is this is without 

constraint I mean it produces the voids and overlap.  

 



And what can be done here is to avoid this void instead of a void it can be a dislocation 

spread on the interface. Instead of overlap, it could be a dislocation distribution between them 

just to accommodate that kind of constraints that is what it is showing. Figure also shows the 

deformation that each grain would experience in the absence of constraints that is the strain it 

would undergo, if it deformed as a single crystal that is what is shown here. Without the 

constraint voids and would ensue and this does not happen in a reality.  

 

So all these voids and overlaps are nicely accommodated through generation of geometrically 

necessary dislocations. And whatever the ideas we have seen, it nicely supports this concept. 

And in addition to the previously discussed aspects of multiple slip voids and overlaps among 

the grains can be eliminated by geometrically necessary dislocation that accommodate the 

strain gradients that exists between the individual grains and the dislocation arrangements 

required to produce compatibility are illustrated in this figure.  

 

So what you see here is we have brought this concept of GNDs and also we have now shown 

how in polycrystalline deformation, how it accommodates the strain gradient and allow the 

deformations to proceed without forming the voids or overlap other defects and so on. We 

will stop here and we will continue our discussion in the next lecture. Thank you. 


