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Now, Coble to Nabarro Herring creep. Again, it is 150, so you are doing epsilon dot c is equal

to epsilon dot nh, so 150 kt into b by d into sigma by g is equal to 12 dl gb over kt by g. So

sigma by g and sigma by g cancel out, kt, kt cancel out, gb, gb cancel out. So what you have

is b by d is equal to 12 dl by 150 d gb. And if we expand this, so this is 12 dol e to the power

- ql by kt by 150 d0 gb. So therefore d over b is equal to 150 by 12 into do gb by dol into e to

the power ql - q gb over kt.



So here since the temperature is already taken as t is equal to 0.9 tm, so the boundary is only

dependent on the grain size, there is no dependence on stress. So the transition from Coble to

Nabarro Herring creep is not dependent on stress but it is only dependent on the grain size,

especially when the temperature is fixed. So, that is why if you look at the map, you see a

certain value of d by b. So this is d by b for a given temperature, and that is what it means the

transition from Coble to Nabarro Herring, there is no dependence on stress.
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Now let us look at the 2nd case, which is Nabarro Herring to dislocation creep. So, again we

have 12 dl gb by kt into b by d square into sigma by g is equal to 6 into 10 to the power 7 dl

gb by kt. We know there is no grain size dependent, so b by d to the power zero into sigma by

g to the power 5. So, what we get is kt, kt cancel out, gb, gb, dl, dl cancel out each other. So

you have b by d square is equal to 6 into 10 to power 7 divided by 12 into sigma by g to the

power 4. So the rest of the top cancel each other, so this is what you have.

So now if you do b by d is equal to 6 into 10 to the power 7 by 12 half into sigma by g

square. So this implies d over b is equal to 6 into 10 to the power 7 by 12 - half into sigma by

g -2. Now if you look at the map, they have plotted it on the log log scale, so if you take log d

over b, so what you will have is log of - half log of 6 into 10 to the power 7 by 12 - 2 log

sigma by g. So with, so this is going to be your x and this is going to be y. So if you see it is a

- bx kind of line. So you have a negative slope, so the d by b is dependent on the stress that is

used. And so you have a straight line equation of state and with a negative slope.



So if you look at the map, that is what it is. So, Nabarro Herring creep to climb, especially

see there is a straight line,  the transition is a straight line with a negative slope. So that is

how you can determine the bounds for Nabarro Herring creep and Coble.  So,  this  is the

concept behind the generation or development of deformation mechanism maps. So you can

use this way, you can use this approach to create maps of any material that you want. Of

course  you  need  to  have  the  details  of  the  microstructure,  the  applied  stress  and  the

temperature, etc. For creating these maps.

So that brings me to an end, to the end on the portion of deformation mechanism maps. So,

now we will quickly go through some tutorials. So the objective is to solve some problems

related  to  the  portions  on  creep  mechanisms.  So  all  the  portion  that  we  covered  about

newtonian viscous creep and power law creep and in the deformation mechanism maps and

things like that, so we are basically going to solve few problems to develop our concepts

further. So, the first question is as follows, problem 1. So, i will be, in the next slide i will be

showing you creep data. 
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So i will give you data of temperature, stress, applied stress and strain rate of deformation and

the goal of this is to determine the, stress exponent n using the data given in the table and you

also have to determine the activation energy of deformation. And the question that you also

have to answer is, is this activation energy using the approach that we are using, will that be

apparent activation energy or true activation energy. So, that is the purpose of this work, of

this question.



So the table contains the data,  the creep data,  so tests  were carried out,  creep tests  were

carried out at 3 different temperatures, 350 degrees centigrade, 400 degrees centigrade and

450 degrees centigrade. And the stresses that were used were varied from 10, 50 and 100. So,

3 different temperatures and 3 different applied stresses and the creep strain rate, basically the

minimum creep data or the steady-state creep rate, that data is also given in this table. So the

question is how do you find out stress exponent n from this data.
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So to understand that we can look at the Bird Mukherjee Dorn equation again. So you have

epsilon kt by dgb is equal to a b by d to the power p and sigma by g to the power n. So if you

take the relation, if you take all the terms onto the other side, so you have a dgb by kt into b

by d  to  the  power  p  into  sigma to  the  power  n  by g  to  the  power  n.  Now for  a  given

temperature, so say if temperature is 350 degrees centigrade, d, which is, we do not know the

activation energy, we do not know whether it is grain boundary diffusion controlled or later

diffusion controlled.

But what we know is that he is going to be some t0 into e to the power – Q over kt. And for a

given temperature, this is going to be constant, okay. And we also know g is a function of

temperature and for a given temperature G is also a constant. The microstructure, the grain

size d is a constant, at that temperature and also we are assuming that there is no grain growth

happening.

Typically if you remember, we said that your grain size should be stabilised at a temperature

higher than the test temperature. So assuming that, so d is also a constant. So there are only 2



variables here, epsilon dot and sigma. So the rest of the terms can be taken as constant k and

so essentially this becomes epsilon dot is some constant k times sigma to the power n. So for

a given temperature and given microstructure, if you make a lot of log epsilon dot, if you take

locks, then this becomes log k + n log sigma.
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And so if you plot log epsilon dot versus log sigma, you should essentially get a straight line,

so this is a equation of the straight line. And the slope of that line will give you the stress

exponent  n.  So,  that  is  what  i  have  done  here  and,  so  you  have  strain  rate  of  creep

deformation on the y axis and the applied stress on the x axis in a log log plot. And i have

taken, i have done that for all the 3 temperatures, 350, 400 and 450. Let us take the case of

400 degrees centigrade, data corresponding to 400 degrees centigrade.

And the plot basically turned out to be something like that. So the strain rate of deformation,

so i give it if it, basically power law it because epsilon dot is equal to k sigma to the power n.

So if i give, when i gave it a power law fit, what i found was epsilon dot is basically a 4 into

10 to the power -13 into sigma to the power n. So, x is sigma, so this is what i got from the

power law fit.  And to the data, house course one way of doing it is if you take your log

epsilon dot and log sigma values, you could also give it a straight line and fit and then see

what are the values.

So what you would have got in that case is log epsilon dot is equal to log of 4 into 10 to

power -13 + log sigma.  And so n is  equal  to  1.  So what we found out from this  is  the

lowercase  and  value,  so  n  is  equal  to  1  for  the  tests  being  carried  out  at  350  degrees



centigrade.  And if you notice the other data is also, the slopes of the other lines are also

parallel to the line that we determined. So the slope is more or less the same in the other case

is also and if you do it, if you carry out these exercise on your own, you will notice that n is

equal to 1 for the other 2 temperatures also.

So n to 1 at 350, n is equal to 1 at 400 and n is equal to 1 at 450 degrees centigrade. So this

shows that the stress exponent is one for the temperatures and the stresses that were used for

this case. Now let us look at determining the activation energy of deformation. So again if we

go back to this case, so epsilon dot is equal to a DGb by kT into b by d to the power p sigma

over G to the power n. Now, if you take, so you have 3 temperatures, so you have to, to get

the activation energy, so epsilon dot can also be represented as constant k1 and sigma beta

exponential - q over kt.

So in this case if you plot epsilon dot lon of, if you do, if you take, it would take ln of epsilon

dot, you will get ln k1 + lon sigma n - Q over kT. So, if you take a plot of ln epsilon dot

versus 1 over t, then you will get the ql you as the slope of the line. So but this has to happen

at a constant stress because now for this to happen, the stress to be constant. So which means

you should take one constant stress value and then look at the strain rates corresponding to

these different temperatures.

So in this particular case, we can take the stress of 10 to the power 7 MPa, so basically 10

MPa, so if  you take that,  so take sigma is  equal  to 10 MPa and look at  the strain rates

corresponding to the 3 points. So, this is strain rate corresponding to 350 degrees centigrade,

strain  rate  corresponding to  400 degrees  centigrade  and strain  rate  corresponding to  450

degrees centigrade. So these are the 3 levels for a constant stress of 10 MPa. And now if you

plot epsilon dot versus 1 over T, so this is what you will get.
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So, log strain rate versus 1 over T, so you can give it an exponential fit, you can just take the

direct data, directly and give it an exponential fit or you convert your strain rate terms, you

convert your strain rate data, convert your strain rate data into ln of strain rate and then plot it

against 1 over t. In either case, what you will get is, the exponential term, that is e to the

power – Q/ kT or Rt, let us say Q over RT. So since you are doing it, x is 1 over T because

your plot is against 1 over T, so x is 1 over T.

So, what you are getting here is Q over R is basically 12466. So, if you remember an earlier

class, portion i also mentioned, you could either do it as Q over Kt or Q over RT, it would not

change because k is basically R over N and N is the avogadro's constant, which is 6.023 into

10 to the power 23. So if you take care of the units, you are always going to get the right



value of q. So, here we are taking the universal gas constant r, so q becomes 12466 into

8.314, so that approximately is 103 kilojoule per mole.

So if you remember i asked question that the activation energy that you are determining in

this case, is it the true activation energy or apparently activation energy. Well, the answer is it

is going to be apparent activation energy and the reason is, you have taken the strain rates

versus 1 over temperature for constant sigma. But for determining real activation energy or

true activation energy, your strain rate versus 1 over T should be for constant sigma over G.
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Since we chose the first  case for our analysis,  so the data that  we get or record is  only

apparently activation energy. So this is how you can determine the activation energy from

deformation prop creep data. So, let us go to problem number 2, so if you remember we said,

in certain cases you can have n greater than 7, although it is not power law breakdown. And n

greater than 7 can happen if you are studying metal matrix composites. And for metal matrix

composites you have to introduce a threshold stressed up to rationalise the data and to get

stress exponent value is close to 5 as is expected for a power law creep behaviour.

So here in this particular problem i am giving you the applied stress versus creep strain rate

data  for  an aluminum metal  matrix  composite.  And the composite  is  basically  aluminum

reinforced with a portion of silicon carbide particles. Now, the first question that i have for

you is, do you think this data rates to be corrected for a threshold stress. And the 2nd question

is if yes, then what is the value of threshold stress. So, there are 2 portions, the first portion is

you could tell me whether this data needs to be corrected for threshold stress, if it needs to be



then what is the value of the threshold stress so that you get your stress exponents within the

range of 4 to 7.
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So, in order to understand whether the threshold stress-based approach is to be taken or not,

plot the straight rate of deformation against stress in a log log plot. So, if you look at the plot,

there is a significant curvature or deviation from a normal linear fit between log and log

stress. But typically when you have log epsilon dot versus log sigma, you expect a linear fit.

But  in  this  case  if  you  notice,  you  have  a  slightly  curved  fit,  so  it  is  nonlinear  fit.

Furthermore, we observe from the plot that the stress exponent is actually higher at lower

stresses.

So the stress exponent is higher at lower stresses, the slope and lower at higher stresses. The

stress exponent is decreasing as you increase the stress level. Now this is not what we expect

in a normal creep behaviour because a normal creep behaviour, you typically go from, except

for viscous glide creep, where you see something like that, you have higher slopes, that lower

slope  and then  higher  slopes,  this  is  for  viscous  glide  mechanism creep.  Otherwise  you

generally of the something like that.

You expect an increase in stress exponent from lower to, lower values to higher values as the

stress increases. But here in this case we are not seeing that, you are seeing a reduction in

stress  exponent  as  the  stress  increases.  And  also  you  remember,  this  is  a  metal  matrix

composite  and not  a  solid  solution  like  class  A alloy where  you  would have expected  a



reduction in stress exponent with increasing stress. So since this is the case , so basically this

means, you will need to invoke a threshold stress value in order to rationalise this data.

(Refer Slide Time: 20:57) 

 

So how do you do that? So, in the threshold stress method, the strain rate can be represented

in the following form. So, the strain rate is actually dependent on an effective stress and the

effective stress is sigma - sigma zero. And if the threshold stress value, if you identify the

right value of this threshold stress, then you will see that the stress exponent, instead of being

greater than 7, it will come to in the range of 4 to 7, let us say it comes close to 5. So, this is

your original data and what you can do is applied stress, limit  certain value of threshold

stress, so let us take threshold stress as 7.3.

So the effective stress is it comes 0.7 for an applied stress of 8 MPa and this is how the

effective stress will  look like for different applied stresses. Please note that the threshold

stress is taken as constant. And the strain that of deformation is over here, now make a plot of

log strain rate versus log sigma - sigma nought. And for different values of sigma0. So here

we said sigma nought is 7.3, when you could have other values of sigma0 and then carry out

this, make these plots after taking different values of sigma0.
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So if you see in this case, i have made a plot of strain rate versus stress, this is stress for

different values of ritual stress. So in the first case i assume 2.5, in another case i assume 4.5,

in the 3rd case i assume 7.3. And the original data is indicated here, so this is how the original

data had a certain curvature. When i used a threshold stress of 2.5, i still got some curvature,

although the curvature has reduced to some extent. When i use the threshold stress of 7.3, it

actually went from being convex to concave as the stress increased.

And what i found out, that only at a threshold stress value of 4.5, we get a very good linear

fit, so that means with a high confidence and also the stress exponent value can close to 5. So

when you chose threshold stress value of 4.5, you got a linear fit between the strain rate and

the effective stress. And you also got high, very good fit to the data and that is why for this

material  cost threshold stress is around 4.5 MPa. So that is the approach to be taken for

determining the threshold stress for a metal matrix composite.
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Now let us look at another problem, this is problem 3 and here i am talking about newtonian

viscous creep mechanisms. This is a plot of log strain rate versus log grain size and what i

want  you  to  identify  is,  tell  me  what  is  mechanism,  what  is  mechanism 2  and  what  is

mechanism 3. So, how do you do that, well, if you see epsilon dot is proportional to d over -

p, that also comes from the bird mukherjee dorn equation. Since this is newtonian viscous

creep, so this is, n is equal to 1, so if you make a plot of epsilon dot versus grain size, so it

actually is to epsilon dot versus d to the power - p.

So epsilon dot versus log epsilon dot, so let us say epsilon dot is some constant d to the power

- p. So log epsilon dot will be log k - p log d. Now, let us see, let us look at case 3. So case 3

says log epsilon dot is equal to a constant, so if you see log epsilon dot is basically a constant,

it does not depend on the grain size. So that could only happen if p is equal to 0. If p is equal

to 0, then log epsilon dot will turn out to be log k, which means it is a constant.

So in what case will expect p is equal to 0, well p is equal to 0 only for harper don creep

under d over viscous creep mechanism. So harper don creep has p is equal to 0, that is why 3

is harper don creep. Now we have only 2 more newtonian viscous creep mechanisms, nabarro

herring and coble. So now let us look at the data here. So between 1 and 2, the higher slope is

exhibited by 1, the lower slope is exhibited by 2. Now let us see that it again, so log epsilon

dot is equal to log k - p log d.

So if sharper, larger drop-in strain rates will be achieved if p is large, the larger the value of p,

later will be the drop in strain rates. So for newtonian viscous creep mechanisms we know p



can be 2 or p can be 3 or p is equal to 0. We already found p is equal to 0, so we found that it

is harper don creep. Now, between p is equal to 2 and p is equal to 3, if p is 3, so if log

epsilon dot is equal to log k -3 log d. So if p is equal to 3, you will see a larger drop in strain

rates and if p is equal to 2, you will see a milder drop in strain rates as d increases.

So between 1 and 2, larger drop in strain rates is observed for case 1. So, this has to be p is

equal to 3 and a milder drop of stated is observed for p is equal to 2, so this is the difference

between 1 and 2. And because we know p is equal to 3 for coble creep, so mechanism one is

coble and mechanism is 2 is nabarro herring creep. So, 1 is coble creep, 2 is nabarro herring

creep and 3 is harper don creep. So this is a fairly elaborate process that i showed it to come

to the conclusion regarding, 2 and 3. But there is also simpler way of looking at this.
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Now if you see newtonian viscous creep mechanisms, the mechanism that would discussed in

the lectures so far have been 3. There are 3 newtonian viscous creep mechanisms, coble,

nabarro herring and harper don. And what we have also understood so far is that coble is

dominated when the grain size is fine and nabarro, harper don is dominated when the grain

size is very large. And nabarro herring creep falls in between coble creep, the grain sizes of

nabarro herring creep is dominant for somewhere in between coble creep and harper don

creep grain sizes.

So in that sense that if you see here, mechanism 1 has to be coble because we are talking

about very fine grains sizes. Here the grain sizes are small, so this has to be coble. Whereas

here, the grain sizes are the largest, in this particular plot, the larger grain sizes are belong to



mechanism 3. So obviously this should be harper don and since the intermittent grain sizes,

they will then correspond to nabarro herring creep. So mechanism 2 is coble, mechanism 2 is

nabarro herring and mechanism 3 is harper don. So this is just another way of looking at this

problem. 
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And the last problem in the tutorial is related to the deformation mechanism map. So this is a

hypothetical deformation mechanism map that I have shown below. And there is a dotted line,

so there is  a blue dotted line,  this  dotted line describes the critical  temperature  at  which

transition  from  nabarro  herring  creep  to  coble  creep  would  occur.  Now,  the  critical

temperature, the formula for the critical temperature is also shown here. What I want you to

tell me is what will be the effect of an increase in grain size and an increase in Ql.

So let us take 2 cases, one case 1 increase in grain size and case 2 is increase in Ql. So you

have to tell me what happens when there is an increase in grain size? Will the line move to

the left or to the right, secondly if you have an increase in Ql, will the line move to the left or

to the right? So these are the 2 cases that you have to discuss and you have to tell me how

does the line move based on case, for case 1 and case 2. Now let us look at case 1. So d

increases, case 1 increase in grain size. 

If you see in this equation, Tc is dependent on grain size d and d is in the denominator. So if d

increases, Tc is going to come down. So, if Tc is coming down, on the x-axis we have Tm

over T. So if d is coming down, so the critical temperature at which the transition happens is

coming down, then what will happen if the line will move to do right. So Tm by T increases



as T comes down.  So the line will move to the right. So, what this tells us is as we increase

the grain size, the domain in which coble creep operates is actually shrinking and the domain

or the boundaries within which nabarro herring creep operates is actually expanding. 

So that is the effect of increase in grain size. So nabarro herring creep is becoming more

dominant as the grain size increases. So that was case one, now let us look at case 2 which is

increase  in  Ql.  So,  when Ql  increases,  again  Tc,  Tc increases  as  Ql  increases.  So  if  Tc

increases,  Tm by T is  going to come down.  So Tm by T is  going to  come down as Ql

increases. So what would happen is that now the line would actually shift to the left. So this

original location, for the line is going to shift to the left as the Ql, activation energy lattice

diffusion increases.

And that is because as the activation energy of lattice diffusion increases, it is going to be

more difficult for diffusion of vacancies to happen through the lattice. So they would rather

prefer to move through the grain boundaries because Qgb has not changed, it  is only Ql

which has increased. So, which means the contribution of coble creep to the strain rate strain

rate of deformation is going to expand whereas the contribution of number herring creep is

going to shrink. 

So that is why when you have an increase in Ql, nabarro herring creep, domain of operation

nabarro herring creep is going to shrink, and the domain of operation of coble creep is going

to expand. So that is how the line would move depending on the value of the grain size as

well as the value of your activation energy. So with that I come to the end of the tutorial,

thank you.


