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So, we were talking about the mechanisms of creep when they operate either in parallel or in

series,  how does  the activation energy change,  how does  the contribution of each of  the

mechanisms towards the activation energy change, depending on the temperature in which

the deformation is taking place. So, we are talking about that, so, so far we have covered the

different mechanisms of creep, we talked about Newtonian viscous creep, grain boundary

sliding, viscous glide, power law creep, power law breakdown and all that. 

And we talked about them operating in series or in parallel. Now we are going to talk about

the concept of deformation mechanism maps. So just like a normal map, which tells us the

different directions or the direction in which, direction and distance of one place from another

comment similarly these maps are also as a  guide.  Just  like normal  maps are guides for

human  beings  to  be  able  to  locate  a  certain  place  in  a  vast  area,  similarly  deformation

mechanism maps are basically maps which help us, help engineers and scientists locate the

bounds  of  stress  and  temperature  in  which  a  particular  mechanism  of  creep  would  be

dominant.
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So we are going to talk about these maps in detail. So the concept of deformation mechanism

maps was first proposed by Ashby, MF Ashby. So Ashby envisioned that the map would be a

good representation of the materials constitutive behaviour. So, when you talk of constitutive

behaviour, we talk about these different mechanisms of creep deformation that can be active

for  different  combinations  of  stress,  temperature  and  microstructures.  And  Ashby  said,

envisioned, that if we have a single map where all of these mechanisms are located, then we

will know for a given material with a given grain size or microstructure what mechanism of

creep will be dominant for a certain combination of stress in certain region.

So, basically the maps are helpful for checking the stress and temperature bounds for a given

creep mechanism. In the first creep deformation map, mechanism map was developed for

Silver in the year 1972. Now, over the years Ashby and his team, they also developed similar

maps for fracture, wear and some other sintering and so some of the other mechanisms which

were also covered with the similar concept of maps.
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How does a deformation mechanism map for Silver, which was the first  one which they

developed,  was  plotted  between  normal  expressed  Sigma  over  G  and  homologous

temperature T over Tm for a particular grain size of the material.  And for the purpose of

determining the bounds, so I will show you the map that was developed and I will explain

how or briefly tell you how these bounds were determined. So essentially the bound within

the  different  creep  mechanisms  for  determining  those  bounds,  the  creep  constitutive

equations were used as well as compared for the different mechanisms.
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So the map is shown in the coming slide. So, here is a deformation mechanism map of silver,

so DMM stands for deformation mechanism map. And this, the material that they had had a



grain size of 32 micrometres and they were comparing all the different mechanisms for a

creep strain rate of 10 to the power -8. Now if you look at the map here, so you see the

homologous temperature T over Tm is on the x-axis and the normalised tensile stress Sigma

over mu also it can also be mentioned as Sigma over G. 

So Sigma over mu is the same as Sigma over G, so that is on the Y axis. So what you notice

here is at low tensile stresses as well as at low temperatures, so if you are carrying out a low

temperature test at very low stress, then your material will be in the elastic regime. So the

material is going to be elastically and if  you unload, then you are going to recover your

complete strain. On the other hand if you apply very high stresses at low temperature, so if

you are applying very high stresses at low temperatures, then it is more or less like a simple

tension test where plastic deformation happens by the glide of dislocation.

So that is why at very, at low temperatures at high stresses or even at for that matter even if

you  go  to  very  high  temperatures,  dislocation  glide  is  going  to  be  the  deformation

mechanism. It is going to determine the extent of plasticity, so the glide of dislocations will

do that. In an intermediate temperature and stress range, so if you have a certain combination

of stress and temperature, normalise stress and normalise temperature, you can see the other

mechanisms coming into play. 

So you can have dislocation creep which is basically dislocation climate controlled creep you

can have diffusional flow and when we talk of diffusional flow we know of to mechanisms,

one  is  Coble  creep  any other  one  is  Nabarro  Herring  creep.  So they found out  that  for

different combinations of Sigma by G and T by Tm you could have one mechanism dominant

over another or over the others. So, this is basically what we are talking here and now what I

want to do is I want you to tell you how or I want to describe how these mechanism maps or

these bounds can be identified for these different mechanisms.
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So I am going to talk about the bounds for the following, so I am going to talk about the

bounds, how is the bound determined or the boundary determined for a transition from Coble

creep to Nabarro Herring creep, how is the boundary determined for Nabarro Herring creep

to dislocation creep and even how is the bound determined for dislocation creep to Coble

creep. So these are the 3 mechanisms and I am going to talk about the same. Now one point is

at low homologous temperatures, dislocation climb is suppressed. 

So if you see at low homologous temperatures, we are mainly talking about at high stresses,

dislocation glide, that is because that low temperatures dislocation climb is suppressed. And

have  dislocation  glide  becomes  the  dominant  deformation  mechanism.  When  we  say

dislocation glide, let it be clear that this should not be confused with the viscous glide creep

mechanism which operates with n is equal to 3. So the width of the glide creep mechanism

basically involves the dislocations trapped by the solute atmospheres and the diffusivity of

the solute atoms is what will determine the rate of creep.

So  this  dislocation  glide  should  not  be  confused  with,  should  not  be  confused  with  the

viscous glide creep mechanism. So now I am going to derive or established these boundaries

between the different mechanisms of creep. So first let us start with the, let us look at the

boundary between Nabarro Herring creep and dislocation creep, so this green line. So let us

look at how how to determine the boundary between Nabarro Herring creep and dislocation

creep.
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So for determining this boundary we will employ the Bird Mukherjee Dorn equation. So the

Bird Mukherjee Don equation is basically Epsilon dot KT by DGb is equal to A b by d to the

power P into Sigma by G to the power n. So we basically apply the Bird Mukherjee Dorn

equation and for understanding that transition between the different mechanisms of creep. So

the Bird Mukherjee Dorn equation if you recall, for Nabarro Herring creep, p is 2, p is equal

to 2 and n is equal to 1, D is equal to, lattice diffusivity, so that is equal to D0L a e to the

power - QL over KT. And A, the constant has a value of 12.

So that is for Nabarro Herring creep. For dislocation climb controlled creep, we know it is a

grain size independent, the mechanism operates without any grain size dependence. So p is

equal to 0 and n can be between 4 to 7, so let us take the n is equal to 5 and then D is equal to



lattice diffusivity which is again D0L e to the power - QL over KT. And the constant A for

dislocation climb control creep is 6 into 10 to the power 7, okay. So now when you are

looking at the boundary, so the basically the boundary is the point where both strain rates of

deformation are going to be equal.

That means the strain rate of deformation due to Nabarro Herring creep is going to be equal

to the strain rate of deformation due to dislocation climb controlled creep. So, let us try the

relationship for Nabarro Herring creep. So Epsilon dot N H, which is for Nabarro Herring

creep will be, so if you take all these 3 terms towards the other side, so it will be A DL Gb

over KT into b by d square and Sigma by G to the power 1. Okay and d is basically the grain

size if you recall. So and A like I said it is 12.

And the strain rate of deformation for dislocation creep similarly can be written as 6 into 10

to the power 7 into DL Gb over KT and since p is equal to 0, so it is b Over d to the power

zero and Sigma by G to the power n. So if you equate both of these, so now let us equate. So

what we essentially get is A DL, so instead of A, let me write it as 12 DL Gb Over KT into…

Okay. So clearly you will have DL and DL cancelling each other, Gb, Gb cancelling each

other, KT, KT cancelling each other. So what you are essentially have is 12 by 6 into 10 to the

power 7 into b by d square is equal to Sigma by G to the power 4.

So this implies Sigma by G is equal to 12 by 6 into 10 to the power 7 to the power 1 by 4 into

b by d to the power 1 by 2. So, if you look at this equation, Sigma by G does not have any

relation with T over Tm. So it is only dependent on the grain size, so Sigma by G has no

relation to T over Tm, that is means it is independent of T over Tm. So for this transition the

only dependency is on the grain size. So, if the grain size is already given, so in this case for

severity 32 micron, so what you essentially know is that Sigma by G is basically a constant

and there is no dependence on T over Tm.

That is why if you look had the map, for Nabarro Herring creep, for Nabarro Herring creep to

dislocation  creep,  you  basically  have  a  stress  value,  that  is  a  stress  value  at  which  the

transition  happens  and there  is  no  dependence  on  the  temperature.  So,  that  is  about  the

transition between the dislocation cream on Nabarro Herring creep. Now let us look at the

transition between Coble creep and Nabarro Herring creep. So a Coble creep and dislocation

creep.
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So if similar method can be used, so we are going to do Epsilon dot C equal to Epsilon dot

DC and for Coble creep we have AC DGb into KT, AC DGb into Gb by KT into b by d to the

power 3 into Sigma by G again for Coble creep it is a Newtonian viscous creep mechanisms,

so Sigma by G power 1. And dislocation creep like we wrote earlier, to 6 into 10 to the power

7 DL Gb over KT into Sigma by G to the power 5. So the constant AC the concert AC for

Coble creep, AC is 150, so what we get here is, we expand it, so you get, so DGb, now DGb

is D0 is Gb e to the power - Q Gb over KT. And DL as we know is D OL e to the power - QL

over KT. Okay.
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So when you equate these, what you end up is with 150 D0 Gb into e to the power - Q Gb

over KT into b by d to the power 3 is equal to 6 into 10 to the power 7 D0L e to the power - Q

and over KT into Sigma by G to the power 4. So, this implies Sigma by G to the power 4 is

equal to 150 by 6 into 10 to the power 7 into D OG b by D OL and into exponential of QL - Q

Gb over KT into b by d to the power 3. So, what is coming out from here is that Sigma by G

has a dependence on temperature. So if it take the, if we write it in terms of Sigma by G, then

Sigma by G is equal to 150 by 6 into 10 to the power 7 to the power one by 4 into D OG b by

D OL.

Again for silver, we know the grain size D And then QL and Q Gb comes, okay, is known and

D OG b by D OL is also known. And that rest of the things are known, so Sigma by G has a

non-linear essentially non-linear dependence on the temperature. So Sigma G, Sigma by G is

a  function  of  temperature  but  it  is  not  a  linear  function.  So  the  bounds  between,  so

accordingly, since it is not a linear function, so the bounds between dislocation creep and

Coble creep. And that is why if you look at the map, it is not a straight line, so the boundary

between Coble creep and dislocation creep is, it is curved because of the non-linear function,

knowledge dependence of Sigma by G over T over the temperature.
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Now let us look at the last case, which is the transition between Coble creep and Nabarro

Herring creep. So this is the last case, so again frequently Nabarro Herring strain rate is equal

to Coble creep strain rate. So what we end up is 12 into DL into Gb over KT into b by d

square into Sigma by G is equal to 150 into 150 DGb over KT b by d 3 into Sigma by G. So

Sigma by G and Sigma by G cancel out each other, so what you have here is temperature

which ends up as QL - Q Gb by K Lon 12 by 150 into D OL by D Gb into d by b.

So, here the temperature is basically independent of the stress level. So it is only dependent

on the value of the temperature and is independent of the stress level. So that is why if you

see in the map, it is basically a straight line giving the temperature value at which there can

be a transition from Coble creep to Nabarro Herring creep, there is no dependence on stress.

So, this basically through these equations, by using these equations you can determine the

bounds of the different, the bounds of the different mechanisms.

So  you  can  find  out  at  what  temperatures  will  Coble  creep  be  dominant  and  at  what

temperatures will Nabarro Herring creep be dominant, at what combinations of stress and

temperature will dislocation creep be dominant over Coble creep. So, that is something, that

is how you can go about this and determine the boundaries and create the map. So this is how

Ashby and his team, this is how they developed their mechanism maps.
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In subsequent years, there was a different type of map, it is also a deformation mechanism

map but it is different from the Ashby map. So this map was developed by Mohammed and

Langdon. And we can call it as Mohammad Langdon map so this is basically an alternate way

of representing the deformation mechanism maps where instead of Sigma by G versus T over

Tm, the map is d Over b versus Sigma by G. So this is the Mohammad Langdon map. The

reason they chose d by b or the grain size because we know the mechanisms of creep are also

a function of the grain size of the material.

For example we know Harper Don is independent of grain size, dislocation creep mechanism

will be independent of grain size, whereas Nabarro Herring creep, grain boundary sliding,

Coble creep, etc., they are dependent other grain size. So we can use this knowledge, the fact

that some mechanisms are dependent on grain size and some are not, this knowledge can be

used and the map can be created and that is where exactly Mohammad and Langdon have

done.
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So  they  plotted  normalised  grain  size  d  Over  b  against  normalised  stress  for  a  given

temperature. So this is how the Mohammad Langdon map looks like. This map was created

for aluminium 3 percent magnesium at a temperature of 0.9 times the melting point of the

material. So, if you see it is d by b over Sigma by G and what we see here is at fine grain size,

so when you have fine grain size, you have lower values of d by b, today are saying Coble

creep is dominant, as you increase the grain size, Nabarro Herring and if you further grow up,

go up in grain size, we know that Harper Don creep becomes dominant at very large grain

sizes.

And this is at low stresses but if you go high in Stresses, we know that dislocation based

mechanisms, that is power law creep starts coming into play at high stresses. So now you

start seeing dislocation climb control creep appearing in the deformation map and also at

higher stress levels you can also have dislocation glide controlling the creep deformation. So

these are the different mechanisms that they showed in aluminium 3 percent magnesium.

Again the strain rates of deformation, the bounds for determining the bounds you can equate

the strain rates of deformation of the different creep mechanisms. So we will do that for

Coble to Nabarro Herring creep, so to show how these bounds look like, we will do it for

Coble  to  Nabarro  Herring  creep  and  also  Nabarro  Herring  creep  to  dislocation  climb

controlled creep. So these are the 2 bounds that I will determine for the purpose of illustrating

how the map will look like, why are there some lines parallel to the x-axis and why are some

lines at an angle to the x-axis, that will be clear when we carry out this exercise.


