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Ok, so till the last lecture, we, we were talking about creep deformation, the factors 

controlling creep and how the nature of creep curve is influenced by these different factors 

and also how depending upon the mechanism of creep, the creep curve may look different for 

different mechanisms.  

 

So now since we talked about mechanisms, so in this lecture we are going to talk about the 

different mechanisms of creep.  
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Broadly there are two categories of creep. So creep deformation which is controlled by 

diffusion of vacancies or creep diffusion which is controlled by dislocation.  

 

So  
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these are broadly the  
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two categories of creep which are, people have identified till date. So when we say diffusion 

of vacancies, so the plastic deformation is controlled by the motion of the vacancies in this 

particular case, and the well-known mechanisms under this category are Coble creep and 

Nabarro-Herring creep.  

 

On the other hand when we say dislocation-based creep mechanisms, the known mechanisms 

are viscous creep mechanism, then we have also Weertman's creep, which is also known as 

Power law creep, and we also have a variant of this called the Jogged screw creep 

mechanism. So these are some common creep mechanisms which are used to explain plastic 

deformation through dislocations.  

 

Now in the last lecture we were also talking about how the strain rate of deformation can be 

described by the following equation. So we said  
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the strain rate of deformation is a function of the grain size. It is a function of stress and it is a 

function of temperature. And then  
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we introduced all these different parameters such as p,  



(Refer Slide Time: 01:55) 

 
n and  

 

(Refer Slide Time: 01:56) 

 
Q.  
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So what we said was p was grain size exponent, n is the stress exponent and Q is the 

activation energy of deformation. Now what can be done is if you know the values of p, n and 

Q you will be able to tell which mechanism of creep is actually controlling the deformation 

process. 

 

So for different values of p, n and Q, so what I mean to say is for diffusion of vacancies as an 

example, so if creep is controlled by the diffusion of vacancies then you will have a certain 

set of p, n and Q values and whereas if it is controlled by different dislocat ion-based 

mechanisms then you will have another set of p, n and Q values.  
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So let me tell you what are the different values of p, n and Q which have been known for 

these different mechanisms.  

 

So the mechanisms of creep which have been identified so far are listed here. So you have 

Nabarro-Herring creep, you have Coble creep, Harper-Dorn creep, Grain Boundary Sliding 

and you have a Viscous Glide, Dislocation Climb controlled creep, and then you have Power 

Law breakdown.  

 

So these are broadly the different ways in which creep deformation is controlled or basically 

you can say these are the different rate controlling mechanisms of deformation. Now very 

clearly the values of n, p and Q are different  
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for the different mechanisms. 

 

For example for Nabarro-Herring, n that is the stress exponent  
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has a value of 1, and p which is the grain size exponent  
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has a value of 2. And Q c which is the activation energy of creep deformation is known to 

have the value equal to Q L  
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where Q L is lattice diffusion activation energy. 
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Similarly when we talk of, similarly when we talk of Coble creep n is again 1 but  
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p has now a different value.  
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So p is equal to 3 and here the activation energy Q c is equal to Q g b and Q g b  
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is known as the grain boundary diffusion activation energy. 

 

So basically  
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as you go from one type of mechanism to another these values keep changing. Now among 

these if you see these three mechanisms, Nabarro-Herring, Coble and Harper-Dorn, all three 

bear a value of n is equal to 1.  
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And these mechanisms, the n is equal to 1 mechanisms are known as Newtonian creep 

mechanisms. So Nabarro-Herring, Coble and Harper-Dorn creep are known as the Newtonian  
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creep mechanisms.  

 

So why are they known as the Newtonian creep mechanisms? Well  
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that is because of the following things. So the Newtonian fluids, so Newtonian fluids are 

those where the viscous stresses arising from the flow are linearly proportional to the local 

strain rate. So essentially what this means is the local strain rate of deformation in Newtonian 

fluids is directly proportional to  
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the applied stress.  

 

And if you see there is a similarity between this equation and the equation of creep when n is 

equal to 1.  
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So when n is equal to 1, you can see that the strain rate of deformation or the creep rate of 

deformation is going to be directly dependent on the value of sigma. 

 

So that is why all those cases where n is equal to 1 where there is a direct  
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dependence, linear dependence of epsilon dot on sigma, those are known as the Newtonian 

creep mechanisms or the Newtonian viscous creep mechanisms.  
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So from here on, for the next few minutes we are going to talk more about the Newtonian 

viscous creep mechanisms. So we will go into the details of Harper-Dorn, we are going to go 

into the details of Nabarro-Herring creep, Coble creep and Harper-Dorn creep.  
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So first let us talk about Nabarro-Herring and Coble creep. So the reason I am, so between 

Nabarro-Herring, Coble and Harper-Dorn there are some subtle differences, but the main 

difference between Nabarro-Herring, Coble and Harper-Dorn is that Nabarro-Herring and 

Coble creep are known as diffusion creep mechanisms that means the creep deformation is 

controlled by the diffusion vacancies.  

 



Whereas Harper-Dorn, although there are lot of points of view about Harper-Dorn but by and 

large I think one thing that has been agreed upon is that Harper-Dorn is considered to be a 

dislocation-based creep mechanism. So we are going to talk more about Harper-Dorn creep in 

the coming slides but right now I am going to focus about Nabarro-Herring and Coble creep.  

 

So now Nabarro-Herring and Coble creep diffusion creep based mechanisms and the main 

difference between these two is that the grain size exponent  
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p is equal to 2  
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for Nabarro-Herring and it is 3 for Coble creep.  
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And for Nabarro-Herring the activation energy  
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of deformation, creep deformation Q is equal to Q L whereas it is Q is equal to  



(Refer Slide Time: 07:22) 

 
Q g b for Coble creep. 

 

So Nabarro-Herring creep was identified by Nabarro in the year 1948 and independently by 

Herring in the year 1950 that is why this mechanism of deformation has been named against 

these two gentlemen. So it is known as Nabarro-Herring whereas Coble was identified by R. 

L. Coble in the year 1963. So the references are mentioned here.  
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So what happens in Nabarro-Herring creep and what happens in Coble creep? So we are 

talking about diffusion of vacancies, so what, how exactly or what exactly happens during 

diffusion?  



So what has been observed is when a stress is applied, so creep, for creep you need stress, 

you need temperature, so when you apply a stress under certain conditions, combinations of 

stress and temperature, what has been observed is there is diffusion of vacancies from grain 

boundaries perpendicular to the applied stress to the grain boundaries parallel to the applied 

stress throughout the lattice.  

 

So in Nabarro-Herring creep what is happening is there is some form of diffusion of 

vacancies and  

 

(Refer Slide Time: 08:30) 

 
this diffusion of vacancies is happening from grain boundaries which are perpendicular to the 

applied stress  
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to grain boundaries which are parallel to the applied  
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stress and the diffusion takes place through the lattice, through the bulk of the crystal. 

 

Whereas in Coble creep, so what happens in Coble creep is when a stress is applied again for 

certain combinations of stress and temperatures, there the diffusion of vacancies from grain 

boundaries perpendicular to applied stress to grain boundaries parallel to the applied stress 

actually happens through the grain boundaries.  
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Instead of diffusion happening through the lattice,  
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in the case of Coble creep the diffusion of vacancies happens  
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through the grain boundaries. So that is how Nabarro-Herring and Coble creep are different 

from each other.  

 

So  
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in this picture I am giving you an illustration of the mechanism, so Nabarro-Herring, so you 

have a stress, sigma and this is grain  
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boundary which is perpendicular to the applied stress, another grain boundary which is 

perpendicular to the applied stress and these two, these grain boundaries can be assumed to 

be more or less parallel  
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to the applied stress. 

 

So what happens is when you are applying a stress so there is excess of vacancies which is 

generated at the grain boundaries  
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perpendicular to the applied stress.  

 

So there is more amount of  
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vacancies here and less amount of vacancies on  
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the grain boundaries which are  
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parallel to the applied stress so vacancies are going to move from the grain boundaries 

perpendicular to the applied stress to the grain boundaries parallel to the applied stress.  

 

So you have  



(Refer Slide Time: 10:11) 

 
diffusion of vacancies like that. So  

 

(Refer Slide Time: 10:16) 

 
vacancies are going from grain boundaries perpendicular to grain boundaries parallel. 

 

If you see in this picture the blue arrows actually show motion from here to here and that is  
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because that is the direction in which atoms are going to move. So when you say vacancies 

are moving, the opposite of it is atoms are moving in the opposite direction. So the atoms 

move in a direction opposite to the motion of vacancies. 

 

So because there is atoms moving from the grain boundaries parallel to  
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the applied stress to the grain boundaries perpendicular to the applied stress, so what 

eventually happens is that you have an extension of the grain. So if  
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you see the dotted line actually indicates the change in the grain length. So the grains tend to 

elongate along the direction of the applied stress.  

 

Now let us look at the case of Coble creep. So in Coble creep again you have a stress which 

is applied perpendicular to the grain boundaries.  

 

So all those grain boundaries which are perpendicular to the applied stress are going to have 

an excess of vacancies  
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and the grain boundaries which are parallel to the applied stress  
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are going to have a lower concentration of vacancies. So again there is a vacancy 

concentration gradient. 

 

So vacancies are going to move in this direction  
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and in this case the vacancies prefer to move along the grain boundaries.  
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So in comparison to Nabarro-Herring where the vacancy diffusion is through the bulk of the 

grain, in Coble, Coble creep the idea is that vacancies tend to go along the grain boundaries.  

 

So these are the grain boundaries.  
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So the vacancies consider the grain boundaries as a easier path to, by which they can travel. 

So again the same thing, the blue arrows indicate the direction of motion of the atoms. So the 

atoms move from parallel grain boundaries  



(Refer Slide Time: 12:14) 

 
to the perpendicular grain boundaries.  
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So again just in like Nabarro-Herring creep there is going to be shape change in the shape of 

the grains. The grains are going to get deformed because of the process and so they are going 

to get elongated. So this is basically an overview of what is exactly happening in Nabarro-

Herring creep and what is happening in Coble creep mechanism.  
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So the strain rate of deformation, so Nabarro-Herring have developed equations to explain 

how creep happens by the mechanism they identified. So that is what we are going to talk 

from here on. So we are going to talk about the derivation of the Nabarro-Herring creep 

equation.  

 

So since there is a stress present and there is also diffusion happening, so the creep basically 

happens here in the case of Nabarro-Herring creep, the creep happens by the stress assisted 

diffusional mass transfer.  

 

So mass in the sense atoms are moving from one grain boundary to another. So there is 

diffusion, so it is basically assisted by stress, so it is called stress assisted diffusional mass 

transfer.  

 

Now like I showed in the diagram the diffusion of vacancies or the motion of atoms from one 

grain boundary to another is leading to a crystal strain which in turn contributes to the 

deformation of the grains and consequently the material. 

 

So in the previous diagram, so here  
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I showed how grains are getting elongated. So  
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basically the diffusion of vacancies or the motion of atoms from one grain boundary to 

another leads to a crystal strain. 

 

So there is a deform plastic strain that is getting introduced in the process and this crystal 

strain in turn contributes to deformation of the grains and consequently, globally, at local 

level you can think of deformation of crystal but when several such crystals are getting 

deformed at a globally it is also deforming your material.  

 



So Nabarro-Herring developed equations to determine the strain rate of deformation 

happening by this mechanism. So when they developed these equations the assumptions they 

made were as follows. The first assumption is that the grain boundaries are perfect sources 

and sinks of vacancies. 

 

So the reason is, if the grain boundaries, they have considered the grain boundaries are 

perfect sources and sinks of vacancies. If the grain boundaries are not perfect sources and 

sinks of vacancies then it will be difficult for deformation to happen by grain boundaries 

releasing the vacancies.  

 

So basically what I am trying to say here is if the grain boundaries are not perfect sources, 

then you may have to apply a stress higher than a certain level for, to create an excess of 

vacancies at the grain boundaries.  

 

But on the other hand, if you look at them as perfect sources and sinks of vacancies so you 

are saying, just by the application of even a tiny load you are able to initiate excess vacancies 

or create excess vacancies and so it is easier, just in the presence of a small stress for the 

diffusion process to start at a high temperature. So that is the first thing.  

 

So the grain boundaries can release vacancies easily as well as absorb vacancies easily. If that 

does not happen then there is going to be either a threshold stress that need to be overcome 

to, for the process to start and again if they do not absorb vacancies easily then also the 

mechanism of creep is not going to operate. So that is the first assumption.  
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Now the second assumption is that the initial dislocation density of the crystal is very low. So 

Nabarro-Herring also assumed that the dislocation density of the crystal has to be low, the 

reason is we want the plastic deformation to happen only by diffusion of vacancies.  

 

But if the material has a surplus of dislocations, if the dislocation density is high then what 

would happen is the dislocations will invariably start contributing to the plastic deformation 

process and hence then the deformation is not entirely by diffusion of vacancies.  

 

It will also have a component of deformation coming from the dislocations motion and thus 

the derivation of Nabarro-Herring creep will then become complicated. 

 

That is why they assumed, Nabarro and Herring assumed that the initial dislocation density of 

the crystal should be low, Ok so with these two assumptions  
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they started deriving the equation. So now I am going to derive the equation.  
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So we said you have a grain boundary; you have a grain and you are going to apply a stress 

sigma,  
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so the grain boundaries which are perpendicular to the applied stress are going to develop 

more vacancies. So the concentration of the vacancies in these grain boundaries which are 

perpendicular to the applied stress is going to be higher than the grain boundaries which are 

parallel to the applied stress.  

 

That is because as you apply a stress, you are basically forcing, you are stretching the bond so 

you are going to create more space so that is a very simplistic way of looking at it but you are 

applying the stress and you are stretching you are basically creating more gap. So that is why 

the grain boundaries which are perpendicular to the applied stress will have an excess of 

vacancies.  

 

Whereas the grain boundaries which are under compression, so this is basically, these grain 

boundaries can be called under tension  
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and say, let us say  
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these grain boundaries are going to be under compression because when you are trying to 

stretch something, then automatically on the other, the other spaces will try to compress.  

So naturally you are going to have compression on these, a compressive stress state on these 

grain boundaries.  
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So what happens is now because of this, the grain boundaries which are perpendicular to the 

stress or which are under tension are going to have an excess of vacancies or surplus 

vacancies compared to the grain boundaries which are under compression.  

 

So this creates a concentration of, gradient of vacancies. Now as a function of stress, so here 

for a creep to happen, you need both stress and temperature. And what we know is generally 

the concentration of vacancies at a given temperature is equal to e to the power minus Q f 

over k T. So  
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that is the concentration of vacancies  
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as a function of temperature and so this is the role of temperature. 

 

So at every temperature you will have an equilibrium concentration of vacancies. Now when 

you have an applied stress combining, so if you, if you define this as C v due to only 

temperature,  
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this is what you will get.  

 

Now when you have stress superimposed on this, so you are contributing vacancies also 

because of the application of a stress then the grain boundaries which were in tension will 

have vacancy concentration given by the following equation.  
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So Q f is the activation energy for formation of vacancies and sigma omega is, sigma is the 

applied stress and omega is the atomic volume.  
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So sigma into omega basically gives you an energy term.  

 

So what basically this equation says is when you have applied, when you have applied a 

stress you are basically providing energy for the creation of vacancies especially because of 

the tension, because under, because these grain boundaries are under tension. 

 

Now let us look at the other case when the grain boundaries are in compression. So your 

concentration of vacancies is going down, going to come down.  



So here you are creating more vacancies, vacancies greater than what you have because of the 

temperature effect and when the grain boundaries are in compression, C v compression, you 

have, you are going to have a reduction in the vacancy concentration.  

 

So you have e to the power minus sigma omega by k T in the compression grain boundaries. 

So clearly you have higher concentration  
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of vacancies in tensile grain boundaries and lower concentration of vacancies in compression 

grain boundaries, so you have a concentration gradient. So you have delta C v and because 

the vacancies are moving from tension to compression so the diffusion path is from the, from 

tension to compression.  

 

So you can say the vacancy concentration is C v, gradient is C v compression minus C v 

tension.  
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So that will be, so delta C v will be e to power minus Q f over k T. If you take it out common, 

then it will have minus sigma omega over k T minus e to the power sigma over, over k T.  

 

So that is what you will end up  

 

(Refer Slide Time: 22:00) 

 
with. delta C v represented by e to the power minus Q f over k T and e to the power minus 

sigma omega by k T minus e to the power sigma omega by k T.  

 

Now the flux, that is, now because there is diffusion happening so there is a flux that is 

created and by Fick's law, Fick's first law we know J is equal to minus D d c by d x, so that is  
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Fick's first law. And D is the diffusivity.  

 

And so if you go by this equation you will have minus D and d c is basically the 

concentration gradient so that is delta C v, so that becomes e to the power minus Q f over k T 

e to the power minus sigma omega over k T minus... by d x.  

 

So  
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d x is basically the diffusion distance and in the case of this grain, with a grain size d, that d x 

can be approximated as d. So  



(Refer Slide Time: 23:17) 

 
it is going to be some constant of d, constant times d but we can approximate it as, 

approximately as the grain size, so d is the grain size.  
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So J then becomes, so because this is diffusion of vacancies so let us call it D v, and so this 

basically becomes D v e to the power minus Q f over k T into e to the power sigma omega 

over k T minus e to the power minus sigma omega over k T by d.  
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So that is what the flux will be equal to. Now when sigma omega is very small compared to k 

T, so if you have a condition like that,  
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when sigma omega is very small compared to k T then we know e to the power sigma omega 

over k T will be equal to sigma omega over k T.  

 

So  



(Refer Slide Time: 24:31) 

 
when the exponential term is small then the exponent, the e to the power x is, if x is very 

small then e to the power x is basically x. So here e to the power sigma omega by k T 

becomes sigma omega over k T. So what that means is you can expand this saying it is D v e 

to the power minus Q f over k T into 2 sigma omega by k T over d. So this is what J is  
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equal to.  

 

Now, so just to give you an example of cases where sigma omega is going to be smaller than 

k T so if your applied stress sigma is in the range of 1 to 50 M P a,  
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and if your atomic volume is 10 to the power minus 29, then  
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in cases like these you will see k T at high temperatures, k T at high temperatures will be 

equal to somewhere in the range of 10 to the power minus 20 Joule  

 

So you will see this number is  
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significantly larger than the product of sigma and omega, and in cases like this your sigma 

omega is going to be smaller than k T. 

 

So you will have, you end up with this particular form of the equation. So J is equal to, so if 

we expand D v, so basically the expansion of D v will be some constant D naught and it is 

going to be e to the power minus Q m over k T.  
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So D is equal to D naught into e to the power minus Q m over k T, so Q m is the activation 

energy for migration of the vacancies.  



So there are two aspects here. The first aspect was Q f which is the activation energy for the 

formation of vacancies. The second thing, activation energy is Q m which is the activation 

energy for the migration of the vacancies.  

 

So J is equal to D0 e to the power minus Q m by k T into 2 sigma omega over d k T. So that is 

what,  

 

(Refer Slide Time: 26:46) 

 
Into, so then there is a term e to the power minus Q f over k T  
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so that becomes equal to D naught e to the power minus Q m plus Q f over k T into 2 sigma 

omega over d into k times T. So that is what the  
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flux, diffusion flux ends up as.  

 

Now if you want to, so because there is some mass transport happening and accordingly there 

is change in shape of the crystal so the amount of material that is flowing from one grain 

boundary to another, to determine that you basically have to, you can talk about it in terms of 

rate of change of volume and that will be equal to the flux into the area.  

 

So units,  
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so J into d square, so if we say it is d V over d t so that becomes D naught into e to the power 

minus Q m plus Q f over k T into 2 sigma omega by d k T into d square. 



So that  
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is what will be the rate of change of volume and since it is rate of change of volume then we 

convert it into rate of change of length. So you can convert rate of change of volume to rate 

of change of length by doing this. So 1 over d square into d V over d t that would be the rate 

of change of length, let us call this some delta d over delta t.  

 

So that becomes equal to 1 by d square  

 

(Refer Slide Time: 28:49) 

 
into d V over d t and so the rate of change of strain, so the rate of strain is going to be 1 over 

d into delta d by delta t, so that becomes  
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1 over d into 1 over d square into delta d V by d t which is D naught e to the power minus Q 

m plus Q f by k T into 2 sigma omega by d k T  
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into d square.  

 

So you have d square, d square cancelling  
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each other and you have a d and d product, so the rate of change of strain which is basically 

strain rate is, ends up as D naught e to the power minus Q m plus Q v over k T into 2 sigma 

omega by d square k T.  
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So this is basically the derivation of Nabarro-Herring creep. So the thing to be noted is  
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when you have Q m plus Q v, Q f, so you have Q m plus Q f, this can be taken as equal to Q 

L. 
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So Q L is basically the activation energy required for the vacancies to move for the Nabarro-

Herring creep to happen.  

 

So Q L is the lattice diffusivity and it is equivalent to the activation energy required for 

Nabarro-Herring creep to happen. So Q m plus Q L equal to, Q f is equal to Q L.  

 

So if we, this equation epsilon0 equal to D0 and this equation can eventually  
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be written as epsilon dot for Nabarro-Herring is equal to A NH approximately equal to ANH 

and D lattice, D L  
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so D L is basically D naught lattice into e to the power minus Q L over k T. So  
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it is D L by d square into sigma omega over k T.  

 

So epsilon dot N H is equal to A N H  
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into D L by d square into sigma omega by k T. So D L is equal to the lattice diffusivity.  
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So that is the derivation of the equation for Nabarro-Herring creep deformation.  
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So a similar equation  
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has been developed for Coble creep. So the difference between, so the strain rate of 

deformation by Coble creep is given by A C over pi into D g b over d cube into delta grain 

boundary into sigma omega over k T. So  
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this is the equation for Coble creep. 

 

So you have A C over pi into D g b by d cube, so D g b is grain boundary diffusivity. D g b is 

grain boundary diffusivity and  
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delta g b, delta g b is grain boundary thickness.  
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So Dgb, the expansion of Dgb is Dgb is equal to D0gb e to the power minus Qgb over k T.  

 

So  
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the activation energy required for Coble creep is basically equal to the grain boundary 

diffusion activation energy whereas the activation energy required for Nabarro-Herring is 

lattice diffusion activation energy. So these are basically the two equations, one for Nabarro-

Herring, one for Coble.  
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Now if you see Coble creep from the previous equation is proportional to 1 over d cube  
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and Nabarro-Herring is proportional to 1 over  

 

(Refer Slide Time: 33:16) 

 
d square. So clearly Coble creep is more sensitive to grain size changes than Nabarro-

Herring.  

 

So what happens is as the grain size continues to reduce, so if you have a material with a finer 

grain size, so why is it sensitive to d cube?  

That is because when you reduce the grain size, you are introducing more and more grain 

boundaries into the material. So that is why Coble creep is going to become more and more 

prominent.  



Because Coble creep requires diffusion of vacancies through the grain boundaries so as you 

refine the grain size you are introducing more grain boundaries into the material so naturally 

Coble creep tends to become more prominent.  

 

So at a certain grain size, critical grain size, Coble creep will eventually become dominant 

over the Nabarro-Herring creep. And what we are also seeing is that the strain rate of 

deformation is more sensitive to grain size in Coble creep than it is in Nabarro-Herring creep. 

 

Now between Coble creep and Nabarro-Herring creep one key difference is if your test is 

being carried out at lower temperatures then Coble creep will be the favored mechanism of 

creep.  

 

So low temperatures, between Nabarro-Herring and Coble creep, at lower temperatures Coble 

creep will be more favored and at higher temperatures Nabarro-Herring creep will be more 

favored. 

 

So the reason is the activation energy for vacancy diffusion within the lattice that is Q L is 

greater than the activation energy required for diffusion along the grain boundaries. So Q L is  
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greater than Qgb.  

 



So what happens is, as you go down in temperature, lattice diffusion is slowly going to come 

down. So for the vacancy, as you go down in temperature the vacancies will find it difficult 

to go through the lattice compared to the more open structure available in the grain boundary.  

 

So you are talking about diffusion of vacancies and the diffusion of vacancies can happen 

through the lattice or they can happen through the grain boundary. Now the grain boundary 

has a more open structure compared to the lattice.  

 

So when the temperature is low, that means the energy that you are providing through 

temperature is not high enough then the vacancies would rather prefer to go through a open 

structure like the grain boundary than go through a more ordered structure like the lattice. 

That is why, at lower temperatures Coble creep going to be dominant at low temperatures.  
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So another way of also looking at the same point is the strain rate is proportional to e to the 

power Q mi/minus over k T.  
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So when T is low, so when T is low k T is small.  
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So if you have, when T is small, if T is low and k T is small if you have Q, the activation 

energy is equal to Q L then the strain rate is going to come down.  

 

If Q is equal to Q L then the strain rate is smaller compared to Q is equal to Q g b.  
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So the point is if T is small, k T is small and if Q is larger  
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then the overall term in the exponent  



(Refer Slide Time: 37:15) 

 
is also going to be larger, so it has a negative point, so it is minus Q over k T.  

 

So if Q is large, then minus Q over k T also being to be large which means the strain rate is 

going to be low. So in such a case you would rather prefer Q to be equal to Q g b rather than  
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Q is equal to Q L so that is why if Q is equal to Q g b at lower temperatures then you will 

have a higher strain rate of deformation achieved with Coble than with Nabarro-Herring. So 

that is the reason behind this. 


