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So, after volume fraction, let us look at surface area per unit volume estimation. Let us

consider a polycrystalline microstructure something like this and illustrator sketch for a

polycrystalline single phase microstructure.  I these are grain boundaries the lines and

into  3  dimensional  structure  it  is  surfaces.  Now, if  I  superimposed  on  this  let  me

superimpose on this a grid of lines, I count the number of intersections that these lines

make  with  the  grain  boundaries  just  like  in  the  case  of  graphite  nodules,  you  had

measured the intersections with the a graphite boundaries. 

These are all intersections that you need to count. And if this is n, it is the number of

intersection, the total length of the lines of all the lines added together is let us say capital

[laughter], then n upon L is gives you the number of intersections per unit length, which

you  estimated  in  the  graphite  nodule  microstructure.  That  relationship  was  simply

written.



Then,  the total  boundary length of these lines per unit  area,  ok.  So, this  is  the total

boundary length per unit area is given by this relation. Now, we will see how we get this

particular relationship. Let us take this line grid and distance between the line grid is let

us say t ok. Now, let me do one more thing, divide these grain boundaries in the structure

into small infinitesimal elements d lambda, and let there be total of m such elements,

then the total length of grain boundaries inside this would be m times d lambda, ok. This

is  the  way I  have just  subdivide  all  the  entire  network of  boundaries  into the  small

elements. So, m times d lambda is clearly the total length.

Now, these grain boundaries are completely randomly oriented, this is assumption that

we need to make here; which means that each of these element d lambda behaves like a

Buffon’s needle,  ok.  Each of these grain boundary segment  of infinitesimal  length d

lambda behaves like a Buffon needle that we have simply thrown on this line grid. What

is  the  probability  that  a  particular  segment  will  intersect  one  of  these lines;  that  we

already seen is 2 times d lambda upon pi t. 

Number  of  expected  number of  intersection  small  n  that  I  should get  would  be this

probability multiplied by m needles. So, this would become 2 by pi I will introduce m

times d lambda upon t. Now, m times d lambda simply L, ok. This is expected number of

intersection.

Now, I want to divide this I should this will get confused here. Let me call this is n L sub

B to represent these are the boundaries. So, here also it will be L sub B. Now, what is the

total length, what is the total length P L is simply small n upon the total length of these

horizontal  lines,  the  line  grid.  Let  me  also  show  here  that  the  dimensions  of  my

microstructures this is l, this is l small l. So, what would be the total length if I have a set

of parallel lines space t apart along the length l? 

This total length L would be l square upon t, ok l upon t will give you number of lines;

each line is of length l, hence it becomes l square upon t, ok. Number of line is l upon t

each line is of length l, so, it becomes l square upon t; which means that here also on the

right hand side also I divide by the total length. So, 2 by pi L B times t and I divide by l

squared upon t.

Now, this t and this t will cancel this will become 2 by pi L B upon L square. What is this

quantity L B upon l square? L B is a total length of grain boundaries divided by the area



over which it is present so therefore, this is nothing, but boundary length per unit area.

So, if I now look at this it is clear that boundary length per unit area is equal to pi by 2

times, we arrive at this relationship, ok. This was a simple derivation to show this one of

these stereological relationships.

Now, we go to 3 dimensions because I am interested in the surface area per unit volume,

ok. This was an exercise in 2 dimensions let us do an exercise in 3 dimensions.
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The  exercise  in  3  dimensions  I  have  now surfaces;  surfaces  can  be  in  the  form of

particles, it can be in the form of grains, it does not matter. These are all my surfaces just

like I had divided the lines into small infinitesimal elements, I divide the surfaces also

into small infinitesimal areas; each of them having an area d S, and these area elements

are randomly oriented and randomly distributed in the 3 dimensional structures or within

the cubic space.

Now, I introduce a line probe parallel to the z axis, but position randomly. What is the

probability  that  this  line  probable  intersect  any  one  of  these  the  surface  elements.

Imagine that you have just one such element, which is having some orientation of theta

with the z axis and its  projection  having an angle of phi with the x axis this  is  my

orientation of this one particular anyone element of area d S. It will have it will projected

area on the x y plane d S P projected area. This projected area d S P is going to be equal

to is going to be some function of theta and d S is going to be.



Now, what is that going to be what would be the projected area of a small infinitesimal

element onto the x y plane whose orientations is theta and phi. This is going to be d S P

would be equal to d S cosine theta. You can see this when theta is 0, this element is a line

perpendicular to the z axis it will projected s d S and cos theta will be 1. If it is theta is 90

degrees then it will project as a line which has 0 area. So, when put theta is equal to phi

by 2 it gives you 0 and it is going to be independent of phi. So, you can rotate this you

will get the same.

Now, what I need is the average projected area then only I can calculate; what is the

probability that a line probe will intersect this element, what is average projected area

now? By now we know this and I am go to write this d S will be taken out of the integral

4 pi cos theta and then sine theta is coming from the probability density function of

orientations in 3D space and 4 pi is also coming from their sine theta upon 4 pi d phi d

theta phi varies from 0 to 2 pi, theta varies from 0 to pi. 

Now, I think by this time I do not I am sure you would be able to solve this integral first

integrate with respect to phi you will get 2 pi which you cancel with 4 pi; you do not

need to integrate all the way from 0 to pi you can integrate from 0 to pi by 2 so factor of

2 will  come and you just  have to integrate  this  cos theta  sine theta  term which is  a

straight forward integral and the result I am writing directly is d S upon 2, ok, this is the

result.

So, probability of intersection that will a call that as P intersection with the line probe is

the average projected area d S P upon the area of the face in the x y plane. So, l square or

this is simply d S upon l square and there is a factor of half that would be there. If there

are  total  of  m  such  small  infinitesimal  areas  of  the  surfaces;  then  the  number  of

intersection small n the expected number is going to be half is going to be P times m the

probability times the number of such elements that are there which is m times d S upon l

square. Now clearly m times d S is nothing, but the total surface area inside this cubic

block. So, let us call that as just S upon l square.

Now, divide both sides by L if I divide the left hand side by L I will get P L number of

intersections per unit length. So, P L is equal to small l upon L; which is equal to half

times S divided by L cube both sides I  have divided S upon L cube is  nothing,  but

surface area per unit volume. Hence surface area per unit volume would be 2 times P L



ok.  So,  we  have  now  a  relationship  that  if  I  take  a  microstructure;  let  us  say  a

polycrystalline microstructure or particle microstructure does not matter I get P L out of

this 2 times that is simply an estimate or the surface area or those grain boundaries in a

unit volume and remember that boundary length per unit area of this was pi by 2 P L this

we had already seen, which means that I can relate S V and B A as well and I can write S

V to be equal to 4 upon pi, B A. 

That if I have so many boundary lengths in a unit area multiply this by a factor of 4 upon

pi I will get so much of surface density in the material, ok. So, we have done surface area

per unit volume.
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Now, I want to do length density or length per unit volume or the parameter L sub V. So,

that the third parameter that we want to get a stereological relationship for and this you

will see is going to be very easy and we will following the same line of reasoning. Again,

we just restrict ourselves to cubic space. So, I have I have full of linear elements inside

my 3 dimensional structure all randomly oriented. If I take a section through this; then on

this section I should be able to see points. So, I should be in my microstructure be able to

isolate points in the structure.

And, let us see what I can do with this points and how looking at the structure I get it

length per unit volume. We will do exactly the same thing just divide these all of these

line elements into small small infinitesimal element; again let me call that is d lambda



only and there are m such elements and hence the total length of lines inside the cube let

that be capital L is nothing, but m times d lambda. So, we start with the same thing, that

this section will cut some of these small d lambda elements what is the probability of a d

lambda element intersecting a plane probe, probability of d lambda element intersecting

a plane probe. It should be the mean tangent diameter of the d lambda of the one element

divided by L simply.

We have already seen this; that plane probe intersects a feature that one is look at the

mean tangent diameter; what is the mean tangent diameter of such an element that we

saw in the last lecture; we derived a relationship for a cylinder and then we let the radius

of the cylinder go to 0, then it becomes a line and hence the mean tangent diameter for

that was would be the length of that element divided by 2. 

So, this is simply d lambda by 2 divided by l. Number of points; so, n number of points

expected in the structure in the 2 dimensional structure would be there are total of m

such elements and hence m times this probability should be the expected value of the

number of intersections. So, this would be m d lambda upon l and this is a factor of half.

Now, what I measure remember I said that we measure basically ratios of two quantities.

So, I actually would measure number of points per unit area P sub A. So, P sub A would

be n divided by area of my section and area of my section is l square. So, this is half m

times d lambda is the total length of the elements and I also divided I have to divide by L

squares. So, this will become L cube. So, this capital L upon L cube is a total length

divide by the volume of the cube. Hence this is nothing but length per unit volume. So,

from here length per unit volume is 2 times the number of points per unit area. So now I

have related P A here, points per unit area on the slide you can see is related to length per

unit volume.

Now, I have the last fundamental relationship left in stereology; which is number per unit

volume. I have so many particles in a unit volume how can I estimate that?
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So, numerical density N V number of particles per unit volume. So, I have again particles

of precipitates inside and there is some number per unit volume of such particles that I

need to estimate. When I take a section through this; I get this section profiles of this

particles and here I  can measure N A number of particles per unit  area.  What  is  the

relationship between N A and N V? Let us assume that all my particles in this so, all

particles here have same size and shape which means that they will all have same value

of  the  mean  tangent  diameter,  which  means  that  this  section  the  probability  of

intersecting a particle by the 2 dimensional probe would be H bar upon L well L again is

my dimension of the cubic space.

In this space let us say I have capital N number of particles and out here I have small n

number of section profiles then the relationship between small n and capital N would

clearly be related through this probability that a capital N times the probability would

give me an estimate of small  n. So, n would become capital  N times the probability

which is N times H bar upon L. To get points per unit area not point, to get number for

unit area on my 2 dimensional microstructure.

I have to divide small n by the area of my image which is l square. So n upon l square

here also I need to divide. So, this would become H bar times n upon L cube. Now, n

upon L cube is nothing, but number per unit volume. So, this is equal to number per unit

volume. Hence N A is equal to H bar times N V, ok. So, this was the fourth fundamental



relationship that we have derived here. If you look at just to summarize what we have

done.
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This is what you have done. This is just a summary of 3 ways through which we can

measure volume fraction, then relationship between surface area per unit volume here I

have written L sub A, on the board I had written B sub A boundary per unit area both of

the same quantity. So, L sub A, B sub A are the same here length density L sub V equal 2

times P A, N numerical density, which is N A is equal to H bar N V which we just now

derived.

Very quickly we just look and summarize this as well.
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That if I to get volume fraction get a point count by putting a grid and get a point fraction

and that is your estimate of the volume fraction that we have done repeatedly I do not

have to stay with it.
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Now, I have to get surface area per unit volume of this polycrystalline microstructure;

one is directly measure all the lengths and get boundary length per unit area multiply that

by 4 upon pi and that gives you surface area per unit volume which you just now saw or

put a grid of lines count the number of intersections with the boundary get number of



intersections per unit length you have seen how we can do that, where L is the capital L

is the total length of the grid n is a number of intersections of the line grid with the grain

boundaries and you can calculate the surface density S V as 2 times P L and also we have

seen that boundary length per unit area is pi by 2 times P L.
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Now, this is a microstructure where I want to estimate a length per unit volume, but

where are the points in this. If you look at the triple points these are all triple points, in 3

dimensional structure these are triple edges. So, you would count each triple point, count

all exhaustively you have to count all the triple points in the structure, I have circled only

a few, but you would count all of them in this given area of the microstructure or you can

put a smaller frame in a in it and count the triple points. 

So, which will you be shown as demonstration as exercises in the next lecture as to how

to do this get P A. So, small n is the number of counts of the triple points divide by the

area of the microstructure for area of the frame inside which have done the counting and

get P A number of points per unit area and the linear density then is given by 2 times P A.
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Estimation of numerical density well here is the again a very simple relationship. So, if

you want to count this particles you will get N A, but there is a catch in this relationship

all of these relationships. The catches we do not know H bar the mean tangent diameter.

So,  we have two unknowns and we are only able  to make one measurement.  So,  it

becomes that here in order to get numerical density number per unit volume; one would

have to make some assumptions regarding shape. Once if you can assume that then we

can try to solve this problem. So, out of all those relationships if it once again look at the

summary all of these relationships have been derived independent of the shape, right.

But, the last relationship if you need to solve it then you would require a knowledge of

shape, but all other relationships you do not require knowledge of shape. I am go to talk

about a little bit more on the numerical density, but I think this particular lecture I will

stop here and then we will look at, what are called as derived relationships, where out of

this we will derive some of the relationships like the particle diameter. 

If  you assume a certain shape then what kind of numerical  density  how what  is  the

relationship  for  the  numerical  density  we  can  obtain.  Then  we  also  talk  about  for

polycrystalline structure. How we can define grain size and even particle size and those

are the kind of things, we will look at the next lecture.


