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Hello everyone welcome to this material characterization course. In the last class we looked at

the X-ray diffraction conditions through Laue equations and we compared that Laue equations

with the Bragg's law and then we found that there is a difference in these two laws where the

Bragg's law explains the diffraction conditions with the in terms of parallel row of atoms in the

planes whereas in the Laue conditions we were able to obtain the diffraction conditions for the

rows and net as well as the three-dimensional lattices.

And then we also try to relate the Bragg’s law with the reciprocal lattice and we briefly went

through the concepts of reciprocal lattice and we also showed or demonstrated how this Ewald’s

sphere links the Bragg's law with the reciprocal lattice. And then we started discussing about the

intensity of X-ray diffraction which is which is what primarily we are interested in probe when

we use X-rays as a probing tool to analyze the crystal systems and then in that discussion we

were also saying that in order to arrive at the intensity expressions we need to understand how

the X-ray scattered by the single electron is understood. So in that direction we will continue our

discussion today. 



(Refer Slide Time: 02:08)

So look at this first slide where some of the important remarks about scattering by an electron X-

ray scattering by an electron. Since an electric field exerts a force on a charged particle such as

an electron the oscillating electric field of an X-ray beam will set any electron it encounters into

oscillatory motion about its mean position. An electron which has been set into oscillation by X-

ray beam is continuously accelerating and decelerating during its motion and therefore emits

electromagnetic wave (electron scatters X-rays). 

The scattered beam has the same wavelength and the frequency as the incident beam and is said

to be coherent with it, since there is a definite relationship between the phase of scattered beam

and that of the incident beam which produced it. So we have the definition of what is a coherent

beam that means it should have the same wavelength and the frequency as the incident beam, so

we also know that what you mean by the phase relations by now.



(Refer Slide Time: 03:37)

X-rays are scattered in all directions by an electron, the intensity of the scattered beam depends

on the angle of scattering. J.J. Thomson demonstrated that the intensity I of the beam scattered

by a single electron of charge e coulombs and the mass m in kg at a distance r meters from the

electron is given by I=I0(μ0/4π)2(e4/m2r2)sin2α = I0(K/r2) sin2α  where I0 is the intensity of the

incident beam μ0 is equal to 4πx10-7 mkg/C2, K= constant and α angle between the scattering

direction and the direction of the acceleration of the electron.



(Refer Slide Time: 04:41)

Suppose if you look at this kind of coherent scattering of X-ray by a single electron assuming

that this is the coordinate where you have all this electric vectors in the mutual perpendicular

direction X, Y, Z and then we can try to account for the intensity of the X-rays scattered by an

electron. So look at this remarks an polarized incident beam such as that issuing from X-ray tube

has its electric vector E in a random direction in the YZ plane E2= Ey
2 + Ez

2. On the average Ey

will be equal to Ex since the direction of E is perfectly random therefore we can assume Ey
2 = Ez

2

= (1/2) E2.

The intensity of these two components of the incident beam is proportional to the square of their

electric vectors. Since E measures the amplitude of the wave and the intensity of your wave is

proportional to square of its amplitude, so we can write the intensity expression like this IOy = IOz

= (1/2) I0 with respect to this schematic.
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The y component of the incident beam accelerate the electron in the direction Oy. It therefore

gives rise to a scattered beam whose intensity at P is found from the equation to be IPy = IOy(K/

r2). Since α = yOP which is equal to π/2. Similarly the intensity of the scattered z component is

given by IPz = IOz(K/r2) cos22θ.



(Refer Slide Time: 06:57) 

And we can look at the other expressions since α = π/2 - 2θ the total scattered intensity at P is

obtained by summing the intensity of these two scattered components IP = IPy + IPz which we can

substitute  in this  form  K/r2  (IOy + IOz cos22θ) and then we can rearrange them into  I0(K/r2)

([1+cos22θ]/2). This is the Thomson equation for the scattering of an X-ray beam by a single

electron.



(Refer Slide Time: 07:51)

Where  ½(1+cos22θ) is  called  a polarization factor  which we will  be incorporating in  all  the

intensity  equation  whenever  we  are  going  to  write.  If  monochromator  is  used  with  the

diffractometer then this expression is modified into this form that is ½(1+cos22θ.cos22θM). 
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Now  we  will  look  at  another  form  of  scattering  which  is  called  a  Compton  Effect  which

describes the elastic collision of photon and electron. It occurs when the stream of X-ray quanta

or photons encounter loosely bound or free electrons, so there is a slightly different from what

scattering which we talked about previously and here it is the X-ray quanta we are talking about

quanta which encounters a loosely bound or free electrons.  Like two billiard balls which are

colliding with each other something like that. So you have the hv1 is colliding with an electron

before impact like this then after impact it goes like this into two different directions.

The wavelength λ2 of the scattered radiation is thus slightly greater than the wavelength λ1 of the

incident  beam the  magnitude  of  the  change  being given by the  equation  Δλ (A°)  =  λ2-λ1  =

0.0486sin2θ.
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So when an X-ray beam encounters an atom each electron in it scatters part of the radiation

coherently in accordance with the Thomson equation. However the nucleus has extremely large

mass relative to that of the electron and cannot be made to oscillate to any appropriate extent. In

fact: the Thomson equation shows that intensity of coherent scattering is inversely proportional

to the square of the mass of the scattering particle.

The net effect is that coherent scattering by an atom is due to only the electrons contained in that

atom.
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So now we have to ask some questions. Is the wave scattered by an atom simply the sum of the

wave scattered by its component electrons? More precisely does an atom of an atomic number Z

that is an atom containing Z electrons scatter a wave whose amplitude is Z times the amplitude

of the wave scattered by the single electron? The answer is, yes. If the scattering is in the forward

direction  because  the  wave scattered  by all  the  electrons  of  this  atom are  in  phase  and the

amplitudes of all the scattered waves can be added directly.

See you have to understand this point very important. When we talk about a phase relation also

we mentioned this aspect, if the scattering is in the forward direction for example we will look at

one schematic about it and since all the waves will be in the same phase they will contribute to

the intensity. But in reality it is not so. You will have and we will have at least in this case the

electrons will be there in different-different directions an atom.

But the atoms which are supporting the or forward scattering phenomenon they will contribute

more to the intensity. So that is the point we are going to prove in the coming schematic. 
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So look at this schematic this is a nucleus and you have the electrons in the orbits and then you

look at this a green line where the forward scattering rays are shown and they are meeting this

wave front XX′ and then you have the X-ray scattered in the other direction which are meeting in

the YY’ wave front and now you know how to relate this a path difference we have looked at

those details and much more examples we have seen, so now let us with respect to this schematic

let us look at the remarks.

The waves scattered in the forward direction by electrons A and B are exactly in phase on your

wave front such as XX′ here because each wave has traveled the same distance before and after

scattering. The other scattered waves shown have a path difference equal to CB-AD that is CB-

AD is the path difference and are thus somewhat out of phase along a wave front such as YY′.

The  path  difference  being  less  than  one  wavelength,  so  they  are  going  to  scatter  slightly

different.
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Only partial interference occurs between the waves scattered by A and B with the result that the

net amplitude of the waves scattered in this direction is less than that of the wave scattered by the

same electrons in the forward direction. So this is the fundamental point we have to capture. So

the waves which are not in the forward direction they are not going to contribute equally to the

interference  so only a partial  interference  will  occur  between this  waves and then they will

contribute to some extent to the net amplitude of the wave scattered in that all directions.

Here we have shown only one direction of that nature. We have to imagine that these kind of a

partial interference will occur in most of the most of the other directions as well and then finally

you get a net amplitude that is a point you have to understand which is going to contribute to the

integrated intensity. We will we will just talk about this integrated intensity because that is what

we are interested.

So right now you just appreciate this point how the forward scattering waves how they contribute

or how about other rays which are contributing partially to the intensity. 
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So a quantity ‘f’ the atomic scattering factor is used to describe the efficiency of the scattering of

a given atom in a given direction, where f = (amplitude of the wave scattered by any atom)/

(amplitude of the wave scattered by one electron). Suppose if f is equal to Z for any atom

scattering in the forward direction as θ increases the wave scattered by the individual electrons

become more and more out of phase and f decreases.

So it is not just that you have all the electrons will be doing only forward scattering and then you

will get a maximum intensity but it also depends upon the θ, so that is the point we are now

explaining here.
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This is for the atomic scattering factor of copper where you see that as the θ increases in fact it is

not θ it is sinθ/λ which decreases as the θ increases you can see that atomic scattering factor also

decreases so this is very important point.
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And now we will  just  look at the whole picture.  Effects  produced by the passage of X-rays

through a matter in general. You have the incident beam and this is your specimen absorbing

some  of  the  X-rays  will  be  absorbed  and  some  will  release  as  a  heat  and  then  you  have

fluorescent  X-rays  coming  out  and  then  you  have  scattered  X-rays  and  you  have  electrons

coming out you have Compton recoil electrons and photoelectrons and Auger electrons of these

three category all the possibilities when you talk about the scattered X-rays you have unmodified

coherent scattering the other one is a Compton modified incoherent scattering. These are the two

things we have seen today one is coherent scattering other was incoherent scattering.

In one case we see that after the collision the wavelength is changed you get that means they up

because of the collision the energy is lost in the form of kinetic energy. So the λ is slightly

increased that is what we have seen in that expression where it is called a Compton Effect. It is

an  incoherent  scattering,  the  previous  one  where  Thomson  equation  explains  the  coherent

scattering. So these are the two kinds of scattering just for your clarification.
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Now  we  will  look  at  the  structure  factors  we  which  is  very  important  for  the  intensity

calculations. So the expressions which I have written all here all looks familiar to you. The first

one is the we have seen from the structure factor expression Fhkl is the atomic scattering factor

from the all the atoms in the unit cell. We will quickly look at this in few minutes what is the

details here and this expression is the diffraction vector expression which we have seen yesterday

and this is a reciprocal lattice vector and here this is a real lattice vector here which is given and

then this form is the final form you get for the structure factor calculations and we will now take

up some few examples how to use this and how this the equation gives the intensity for a given

crystal system then how they contribute to the total diffraction intensity.
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So I will go to the blackboard and then. So what I have written is if a unit cell contains atoms 1,

2, 3 up to the N atoms with the fractional coordinates (u1 v1 w1), (u2 v2 w2) etc then the atomic all

the atomic scattering factors from that unit cell should be added like this and then if you sum it

up and then that final equation appears like this.  So this is the summation of all  the atomic

scattering factors multiplied by e2πi(hun+kvn+lwn) again so on. I believe that you now appreciate this

expression this is atomic scattering factor and then this is this complex exponential function we

referred a scattered electromagnetic radiation.

In this case it is X-ray is expressed in terms of complex exponential function and this is coming

from the phase difference,  but also we have seen before this particular component is coming

from a phase difference and this is the structure factor from the unit cell expression. So now we

will apply this expression for individual unit cell, we will take it up a simple case and I have

taken this from this book B D Cullity and S R Stock and you can go through for the entire

description and much more detailed information is given there. And you can also note down

certain  important  relationship  mathematical  relationship  in  order  to  understand  some of  the

factors which will come in between. So first let us go through that. 



You can write some of the useful expressions like this you can keep in mind before we look at all

the derivation for structure factor for a given crystal system. The eπi which is equal to e3πi is equal

to -1 and if it is e2πi an even number e4πi or e6πi is equal to 1 in general this is the expression enπi is

equal to -1 to the power n where n is an integer. Similarly we have enπi is equal to e-nπi where n is

any integer and you have this expression as well eiπ+e-iπ= 2cos x.
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So now we will take up an individual expression I mean unit system. Unit cell system containing

only  one  atom.  So if  you take  up  this  expression  the  fractional  coordinates  (0,0,0)  and the

structure factor is F = f.e2πi(0) which is equal to f and F2=f2.  F2 independent of so if you consider a

unit cell containing only one atom then the fractional coordinates can be the origin one I mean

(0,0,0) and then if you substitute that into this structure factor equation then you see that  F =

f.e2πi0 which is f because this component becomes 1 and then you get capital F = f. This is a

intensity which is independent of hkl and is same for all reflections. 

So now we will take up the one more example which is having 2 atoms per unit cell. You is

something like this a base centered unit cell and how do we calculate the structure factor. The as

usual we will start with the fractional coordinates means atoms located in the coordinates for this



particular position is you have (0,0,0) and (½,1/2,0) these are the fractional coordinates you can

see that (0,0,0) position this is (½,1/2,0) position and then you can write the expression as usual

F is equal to. So you get the expression like this, substitute this fractional coordinate into the

structure  factor  equation  and  then  you simplify  this  you  get  f(1+  eπi(h+k)).  So  we will  write

something about this expression.

(Refer Slide Time: 34:50)

So this expression may not be multiplied by the complex conjugate because h+k is always the

integral and F is a real and not complex. So this is the first step we have to understand and then

what is the implication of this condition. The implication is if h and k are both even or odd that is

unmixed indices, then their sum will always be an even and the implication of this condition is if

h and k are both even or odd that is unmixed indices, then their sum will always be an even your

eπi(h+k) has the value of 1. Therefore you have F=2f for h and k and mixed and F2=4f2 if h and k

are one even and one odd that is mixed indices then their sum is all sum is odd and e πi(h+k) has the

value of -1.
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So this is the condition and we can now see that some of the indices what kind of reflection it

will give. So if you apply this rule we can note that in either case the value of l index has no

effect on the structure factor, so that is what we are seeing here in both cases the indices l do not

have any effect. For example if we can take the reflections (111), (112), (113) and (021), (022),

(023) all have same value of F namely 2f. And similarly if you take reflections (011), (012),

(013) and (101), (102), (103) all have 0 structure factor and are systematically absent. So this is

how you realize how the atom position contributes to the intensity through the structure factor.

So this is one example similarly you can apply the similar conditions for a simple cubic system

where you have body centered cubic lattice as well as face centered cubic lattice you can apply

this and then realize that how the structure factor varies. We can look at couple of examples and

also some of the ordered crystals. We will apply this rule and then calculate the structure factor

in the next class, thank you.
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