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Assignment – 2 

Intrinsic semiconductors 

 In today’s assignment class, we will be looking fully at intrinsic semiconductors. This is 

assignment-2, and we will be focusing on intrinsic semiconductors. So, before we start 

looking at the problems, we just do a brief review. So, intrinsic semiconductors or pure 

semiconductors are essentially single crystals; we say that there are no defects in the 

semiconductor, because these defects can again create electrons and holes of their own. 
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In the case of an intrinsic semiconductor, we say that the electron concentration in the 

conduction band that is n is equal to the whole concentration in the valance band that is 

p, and it is equal to something which we denote as ni, and ni we call the intrinsic carrier 

concentration. We also say that ni is a function of the band gap of the material Eg and 

also a function of temperature. So, typically ni is written as        
  

   
  . So, the 

intrinsic carrier concentration depends exponentially on the band gap; the temperature 

term enters in this exponential factor, but Nc and Nv which are the effective density of 

states at the valance band edge and the conduction band edge are also a function of 

temperature. So,  Nc and Nv are also a function of temperature. Typically they are 



 

 

proportional to T
3/2

, but the exponential term is the one that dominates. We also saw the 

general equation for conductivity σ is nothing but neμe and peμh. In the case of an 

intrinsic semiconductor, this just becomes nieμe + μh. So, these are just a few points about 

intrinsic semiconductor; we will be using them today during the course of the 

assignment. 
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So, let us first look at problem one. So, what fraction of current in intrinsic silicon is 

carried by holes? So, we have silicon and it is intrinsic which means n = p = ni, and the 

question asked what fraction of current or what fraction of conductivity is defined by the 

holes? So, if you just say n = p = ni that means, there is a 50 percent contribution that is a 

very simplistic answer, the reason is the conductivity not only depends on n, it also 

depends upon μe and μh, which is the mobility of the electrons and holes. 



 

 

(Refer Slide Time: 04:22) 

 

So, we can write the conductivity equation n e μe + p e μh; this represent the fraction 

carried by the electrons - fraction due to electrons; this is the fraction due to holes. So, 

we can include the numbers from μe and μh. So, fraction carried by the holes, we can 

write this in the form of a ratio is nothing but  
    

         
. So, for an intrinsic 

semiconductor n = p = ni. So, these terms cancel, e will also cancel. So, this is nothing 

but 
  

     
 . So, the fraction of current carried by holes is directly proportional to the 

whole mobility we can plug in the numbers for silicon here. So, for silicon μh is 450 cm
2
 

V
-1

 s
-1

; μe is 1350, so the mobility of the electrons is higher. So, we can plug in these 

numbers and the fraction is 0.25. 

So, even though we have equal concentration of electrons and holes, they do not have the 

same mobility; and this is because your electrons are moving in the conduction band, and 

the holes are moving in the valance band. And this ultimately determines what fraction 

dominates whether the electron conductivity dominates or the whole conductivity 

dominates. Later when we see an extrinsic semiconductor, we will find that n and p are 

not the same; one is much higher than the other, and then there one of the term dominates 

because of the difference in concentration. 
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So let us now move to question 2. 
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So, we have a pure semiconductor or an intrinsic semiconductor, the band gap is 1.25 eV. 

So, the effective masses of the electrons and holes are also given. The effective mass of 

the electron   
  is 0.1 times   , where    is the mass of the electron; and   

   is 0.5   , 

this is the effective mass for the hole. Once again, we have seen the concept of effective 

mass before. So, effective mass does not mean a change in the actual mass of the electron 

or the hole it just represents the cumulative of all the forces of the atoms in the lattice 

that basically acts on the electrons and holes. Once again these numbers are different, 

because you have electrons that are moving in the conduction band and holes that are 

moving in the valance band. So, the band gap is given, the effective mass values are 

given. The carriers scattering time is temperature dependent and that is given of the form, 

so τ which is your scattering time is a function of temperature, and this is 1 minus 10 to 

the minus t. So, 
         

 
 and the units are seconds. 

So, the effective masses are given, the band gap is given, and the temperature 

dependence of the carriers scattering time is also given. This we will use to calculate the 

mobility’s. So, we want to find the following at 2 temperatures; one is 77 Kelvin and the 

other is 300 Kelvin. So, 300 Kelvin is room temperature 77 Kelvin is typically your 

liquid nitrogen boiling point, so that is a low temperature. The first one we want to find 

is the concentration of electrons or holes, because this is a pure semiconductor. What we 

want to find is the value of the intrinsic carrier concentration. 



 

 

So, we can go back to the equation ni is nothing but         
  

   
 . So, the problem is 

we do not have the values of Nc and Nv; these are the effective densities of states at the 

band adjust, but these we can calculate once we know the effective mass. So, Nc which is 

the density of states at the conduction band edge is nothing but   
    

   

  
 
   

 . N v we 

can do the same for the valance band edge   
    

   

  
 
   

  So, we have the values for 

    ; again we see both are temperature dependent, they are proportional to t to the 

power 3 half. So, once we calculate         for both the temperatures, we can plug in 

here and calculate the value for ni the band gap is also known. 

So, typically you have to keep all of this in SI units. So, you have to convert Eg from 

electron volts to joules and that we can do by just multiplying by 1.6 x 10
-19

. K b is also 

in joules, so it is your Boltzmann constant that has a standard value. So, once we plug in 

the numbers, I am just going to write the final answers, but you can just go through and 

check. So, Nc at 77 Kelvin is 1.03 x 10
23

m
-3

 . So, if you remember the definition of the 

effective density of states is the total number of states per unit volume that is available 

for the electron to occupy or the hole to occupy. Similarly Nv is 1.151 x 10
24

 m
-3

. 

We can do the same calculations for 300 Kelvin. I will again just write down the 

answers. So, Nc is higher 7.92 x 10
23

; Nv is 8.85 x 10
24 

m
-3

. So, compared to 300 Kelvin 

Nc and Nv are higher, this is because we have more density of states available at higher 

temperature, simply because they are directly proportional to T
3/2

. So, we can substitute 

these values of Nc and Nv in this expression and calculate the value for ni. 

So, let me just write that down ni at 77 Kelvin is 4.63 x 10
-18

 m
-3

, so that is a really small 

number. ni at 300 Kelvin is 8.56 x 10
13

 m
-3

. So, I can also write this in cm
3
 or 8.56 x 10

7
 

cm
3
. So, your Nc and Nv values if you look or of by one order of magnitude, simply 

because you have a rise in temperature, but because your ni depends exponentially on the 

band gap, there is a huge variation between 77 Kelvin, which is your liquid nitrogen 

temperature, and 300 Kelvin which is room temperature. So, here you have a value that 

is 10
-18

 and at room temperature you have a value for ni that is close to 10
30

, so that 

overall there is a 31 orders of magnitude change as we go from liquid nitrogen to room 

temperature. This is why we say that out of these 2 terms Nc and Nv and the exponential 

term the exponential term is the one that dominates in determining the value for ni. So, 



 

 

this is part-a, where we want to calculate the concentration of electrons and holes. Part-b, 

we want to calculate the Fermi energy or the location of the Fermi level. 
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So part-b, we want the location of EFi; this is again a standard expression EFi is 
  

 
 

 

 
    

  
 

  
  . So, if me and mh were equal then EFi will be exactly at the center of the band. 

If you remember EFi is nothing but a representation of the chemical potential or the 

amount of work that needs to be done in order to remove an electron from a 

semiconductor. So, even though your electron and hole concentrations are the same, so n 

= p because you have different effective masses, your EFi is slightly shifted from the 

center of the gap. We can once again plug in the numbers, so 77 Kelvin, 300 Kelvin   
  

and   
  values are given temperature is also known. So, EFi here, if you do the 

substitution is 0.633 eV; at room temperature EFi is 0.656. 
  

 
, if you look at it is just 

    

 
 

which is 0.625 electron volts. So, the values are very close to the center of the band gap, 

but they are slightly shifted and the shift becomes higher, the higher the temperature. So, 

this is 0.633 and this is 0.656. So, slightly deviated away from the center of the band gap 

this is part-b. 

In part-c, we want to calculate the electron and hole mobilities. So, we want to calculate 

the values of μe and μh. So, μe and μh are related to the effective mass of the electrons and 

holes, and they are also related to the scattering time. So, μe is nothing but 
   

  
  and μh is 



 

 

   

  
 . So,   

  and   
  are given, τe and τh are your scattering times, and you have said that τ 

is nothing but (1 x 10
-10

)/T and the unit is seconds. So, once again we can calculate the 

values of τ. In this particular question, τe and τh are both the same, because we do not 

distinguish between electrons and holes; we only say it depends upon temperature. Once 

we calculate τ, we can go ahead and calculate μe and μh and get it for the 2 different 

temperatures. 

So, let me again write down this side is 77 Kelvin, this side is 300 Kelvin. So, τ if you 

calculate is 1.3 x 10
-12

 seconds. We can then calculate μe, which is 2.283, unit is m
2
 V

-1
s

-

1
, sometimes cm

2
 V

-1
s

-1
are also there, it depends upon which you want to use. μh is 0.456 

cm
2
 V

-1
s

-1
; and μh the mobility of the holes is lower, because the whole effective mass is 

higher than that of the electron. We can do the same for 300 Kelvin; in this case τ is 3.3 x 

10
-13

 seconds. So, higher the temperature, smaller is the scattering time. So, at low 

temperature, this is minus 12 seconds, this is minus 13 seconds. So, one way to think 

about this is higher the temperature faster the electrons and holes are moving, because 

they have higher thermal velocities. So, they can scatter of the atoms quicker. μe is 0.586 

m
2
 V

-1
s

-1
; μe 0.117 m

2
 V

-1
s

-1
. 

So, the last part of the question, we want to calculate the electrical conductivity - σ is 

nothing but ni e μe + μh. So, ni we got in first part of this question, μe and μh we just 

calculated. So, we can just plug in the numbers. So, σ at 77 Kelvin is very small, because 

if you remember ni is very small. So, 10
-36

 Ω
-1

 m
-1

, you can also have Ω
-1

 cm
-1

 depending 

upon what your values the units for ni and μe and μh are. So, the same thing we can do at 

room temperature and σ is 9.6 - 10
-6

. 

So, by looking at an intrinsic semiconductor at 2 different temperatures, one thing we 

find is that the carrier concentration increases exponentially with temperature. Similarly, 

the conductivity will also increase, because the carrier concentration increases. This 

again is determined by the value of the band gap. So, higher the value of Eg more steeper 

is this dependence. So, of instead of 1.25, we had done the same problem, which say 2 

electron volts, your answers will also be different, but the difference between 77 and 300 

Kelvin will also be more pronounced. So, that is something you can always work out you 

can take the same values, but change the value of Eg to 2 electron volts, and do this 

question and you can see the difference between 77 and 300 Kelvin. 
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Let us now move to question 3. 
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So, question 3, we have gallium arsenide which is a direct band gap semiconductor with 

Eg of 1.42 electron volts at 300 Kelvin. So, gallium arsenide has a higher band gap than 

silicon. So, also a direct band gap material, but that is not relevant for this question, it is 

at room temperature, so temperature is 300 Kelvin. Take Nc = Nv = 5 x 10
18

 cm
-3

 and also 

independent of temperature. So, the Nc and Nv values are given. And just for this 

question, we assuming that both are same and that they are also independent of 



 

 

temperature. Strictly speaking, this is not true, but as you see for this particular question, 

this is a very valid assumption. 

So, first we want to calculate the intrinsic carrier concentration at room temperature, so 

that is pretty straight forward, you seen the formula before, so        
   

   
. So, we can 

plug in the numbers the value of    is given. So, ni is 6.05 x 10
6
 cm

-3
. So, this is the 

intrinsic carrier concentration at room temperature; ni is a pretty small number for 

comparison silicon as a value ni of 10
10

. So, 2 orders of magnitude higher, but this is 

because gallium arsenide has a higher band gap. 

So, the next part of the questions says explain numerically how the carrier concentration 

can be doubled without adding dopants. So, we want to keep this semiconductor your 

pure semiconductor, but at the same time, we want to increase the value of ni. So, the 

new value of ni that we want is double of the ni value at room temperature if you are not 

allowed to add dopants, and if you look at this equation the only way to increase ni is to 

increase temperature, because Nc and Nv are both temperature dependent terms, ni also 

depends on temperature through this exponential term minus 
  

   
. So, increasing 

temperature will once again increase ni. So, the only way to increase ni without adding 

dopants is to increase temperature. So, we want to know what the new temperature is 

when your value of ni is 2 times the ni at room temperature. 

So, we will once again use this expression Nc and Nv are constant. So, it is not a function 

of temperature; if it were a function of temperature that will also have to be taken into 

account, but Nc and Nv are constant. We know the new value of ni. So, it is 2 ni at room 

temperature         
   

  
 let me call this temperature T

‵
. So, T

‵
 is the only thing we 

want to know is the only unknown. This is known; these are all known, we can put this 

and recalculate. And this gives you the value of T
‵

 to be 307.7 Kelvin. So, you increase 

the temperature by 7 degrees. So, ΔT is 7.7 Kelvin, you can double the concentration of 

ni. So, temperature equal to 300 is approximately 27 degrees. So, 300 Kelvin is 27 

degrees Celsius. So, 307 is 34.7 ºC. So, we find it even for a small increase in the value 

of ni. So, you have only doubling the value of ni you need to increase your temperature 

by 7 degrees. If you want the really high conductivities that we see in the extrinsic 

semiconductors can actually calculate that the temperature change must be much higher, 

this is one of the reason why intrinsic semiconductors are almost never used in the case 



 

 

of devices. Usually doped semiconductors are used, because it is much more easier to 

control the dopant concentration and then control the carrier concentration and also the 

conductivity.  
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So, let us now to go to problem 4. So, problem 4 we want to calculate the intrinsic carrier 

concentration of germanium. 
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So, we have germanium with the band gap Eg of 0.66 electron volts; this is lower than 

that of silicon. In fact, germanium was the first semiconductor that was used.   
  is 0.56 



 

 

me and   
  is 0.40 me. So, we want to calculate ni. So, the equation is the same ni is 

       
   

   
. So, Nc and Nv are again related to   

   and   
 . So, Nc is   

    
   

  
 
   

. 

We can write a similar equation for   
 ; we saw that earlier during question 2. So, once 

again we can calculate Nc and Nv plug it back in and get the value of ni. So, I will do the 

numbers you can write down the final answers Nc is 1.05 x 10
25

 m
-3

. Nv, which is the 

same equation except   
  is replaced by   

 ; Nv is 6.33 x 10
24

 m
-3

. So, Nc and Nv are 

known, we can calculate ni. ni, if you do it is 2.36 x 10
19

 m
-3

. I am just writing down the 

final answer, the math can always be worked out are 2.36 x 10
13

 m
-3

. 

So, we saw that gallium arsenide has a value of ni that is 4 times or 4 orders lower than 

that of silicon. Germanium, on the other hand has a value of ni that is nearly 3 orders of 

magnitude higher than silicon. Once again the differences are all related to the band gap 

values. We can then calculate σ, σ is ni e μe and μh. The value of μe and μh are given; μe is 

3900 and μh is 1900 cm
2 

V
-1

 s
-1

, so that σ is nothing but 0.022 Ω
-1

 and cm
-1

. If you also 

want to calculate the resistivity, ρ is 
 

 
 which is equal to 45.66 Ω cm. The question also 

asked to calculate the position of the Fermi level at room temperature. So, that is again 

an application of the formula EFi is 
  

 
 

 

 
    

  
 

  
 . So, this again is very close, but it is 

not exactly at the center of the band gap. 
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So, let us now look at problem 5. 
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There is a particular semiconductor and it says that the effective density of states is a 

constant Nco T
3/2

. In same way, Nv is Nvo T
3/2

. So, the experimental values of ni at 

different temperatures are given. So, we have temperature values of ni in cm
3
, so 200, 

300, 400 and 500 and the values of ni 10
7
. So, we can see that with increasing in 

temperature, the value of ni also increases. So, the question asked us to determine this 

product Nco Nvo and also the band gap. So, both Eg is not known, and these 2 numbers 



 

 

are not known. 

You can go back to the original equation ni is        
   

   
;           we can substitute 

these x terms. So, that this simplifies to T
3/2

         which is a temperature 

independent term times    
   

   
. So, we can choose any 2 temperatures. So, we have 4, 

we can take any 2 temperatures, and take the ratio of ni at these 2 temperatures. So, ni 

sum temperature T1, ni at another temperature T2; it is nothing but taking this ratio which 

is here this is a temperature independent term. So, this becomes  
  

  
 
   

    
   

  
 
 

  
 

 

  
  . So, T1 and T2 values are known, ni values are known, for example, your T1 could be 

200 Kelvin, T2 could be 300 Kelvin in which case the ni values are tabulated we only 

unknown here is Eg. So, I did these calculations taking 200 and 300. You can take it with 

any of the other temperatures and also done and checked. 

If you substitute the values Eg works out to be 1.25 electron volts. So, this is the value of 

Eg, which is the band gap of the material. Once you know Eg you can substitute Eg for 

any of the temperatures, and evaluate            . This is a temperature independent 

term. If you do that       naught is nothing but 1.188 x 10
29

. The units here are crucial 

Nc and Nv the square root of that should have the units of cm
-3

 or m
-3

. In this particular 

question, this also depends on T
3/2

. So, the unit of this product is cm
-6

 K
-3

 that way when 

we substitute for square root, units work out in the right way. 

So, today we have looked at various problems related to intrinsic semiconductors. The 

important thing to remember is that the intrinsic carrier concentration is a function of 

temperature and depends upon the band gap of the material. 

 


