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Intrinsic semiconductors - conductivity 

 

  

Let us start with the brief recap of last class. Last class we looked at intrinsic semiconductors. 

These semiconductors are pure semiconductors and we calculated the concentration of 

electrons in the conduction band and holes in the valence band. We found that at any given 

temperatures, electrons and holes are created in pairs and in an intrinsic semiconductor n, 

which is the concentration of electrons is equal to the concentration of the holes and it is 

equal to a number ni and ni, we called as the intrinsic career concentration. 
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The expression for ni,           
   

   
 , Nc and Nv, where the effective density of states at 

the conduction band edge and the valence band edge and Eg, is the band gap of the material. 

We also wrote down an expression for the conductivity, sigma as n e μe + p e μh, in the case 

of an intrinsic semiconductor. Where n = p this simplifies into μe + μh, μe and μh are the 

mobilities of the electrons in the holes. They represent the ease with which the electrons can 

move through the conduction band or the holes can move through the valence band. Higher 

the value of n higher is the conductivity similarly; higher the value of μe and μe, higher is the 



conductivity. Today, we will start by calculating some of these values for the career, 

concentration, mobilities and conductivities and we will start with silicon. 
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If we have intrinsic silicon at room temperature, temperature is 300 kelvin, the first thing we 

want to calculate is the effective density of states Nc and Nv. We looked at the expression for 

Nc and Nv in last class, Nc depends upon the effective mass of the electron. So,   
    

   

   

 

 
, 

we can write a similar expression for the density of states in a valence band Nv whole power 

3 over 2. In the case of silicon,   
  is 1.08 times   , where    is the rest mass of the 

electron,    star is 0.60   . If you use these numbers, substitute them in here and also put in 

the values of the constants, Nc turns out to be 2.81 x 10
25

 m
3
 and then Nv is 1.16 x 10

25
 m

-3
. 

So, these 2 represent the effective density of states at the conduction band edge and the 

valence band edge. 

Last class, we saw that most of the electrons in holes are concentrated near the valence band 

edges and the conduction band edge. So, we can go ahead and calculate the intrinsic career 

concentration times     
   

   
 . At room temperature silicon has a band gap of around 1.1 ev 

so Eg is if, we plug in that, we get a value of Ni to be 1 x 10
16

m
-3

. This represents the intrinsic 

career concentration of silicon, we write this down here, ni for silicon at room temperature 
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We can convert this to centimeter cube. So, this centimeter cube is around 1 x 10
10

 cm
-3

. So, 

we have 10 billion careers that is electrons and holes in silicon at room temperature. Now, 

this looks like a really large number. Let us try and put that in context now. Let us calculate 

the number of atoms V
-1

 cm
-3

 of silicon. 

This is nothing but the density of the material ρ divided by the atomic weight times 

Avogadro’s number. We substitute the numbers, density of silicon is 2.3 g cm
-3

, atomic 

weight is 28 g mole
-1

 and Avogadro’s number is 6.023 x 10
23

. You substitute these values and 

evaluate, you get the number of silicon atoms per unit volume to be approximately 5 x 10
22

. 

If you looked at the carrier concentration and said that was 10 billion, you can compare it to 

the number of atoms, which is 10
22

. So, 10 orders of a magnitude more than 10 billion. So, if 

you look at it, the number of careers per atom, if you do the division you will find that you 

have 1 electron or 1 hole for every 10
11

 atoms and this turns out be really small. We can go 

ahead and calculate the conductivity using this equation, μe for silicon. We saw yesterday, 

was 1350 cm
2
 v

-1
 s

-1
, μh is 450. You can substitute for the value ni which we have here e is 

nothing but the electric charge that is a constant, μe and μh are given here. If you substitute 

and evaluate you get a conductivity of 2.9 x 10
-6

 Ω
-1

 cm
-1

. Let me write this down again. 
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If you have intrinsic silicon at room temperature, the conductivity sigma which we calculate 

is 2.9 x 10
-6

 Ω
-1

 cm
-1

, resistivity ρ is nothing, but 1 over the conductivity, the resistivity is 3.5 

x 10
5
 Ω cm. So, it is just 1 over the conductivity just to compare. If you have copper, which is 

a metal the resistivity ρ approximately 15.7. We saw this in the first class when we wrote 

down resistivities for different elements. So, ρ is 15.7 x 10
-7

 Ω cm. So, comparing copper and 

silicon, silicon has a resistivity 12 orders higher than copper. So, this makes intrinsic silicon a 

very poor conductor and the reason for that is because we have a very low density of 

electrons in holes. So, you have a very low career density and this is related to the band gap 

of silicon. In the case of copper, which is a metal you have empty states that are there. So, 

both the valence band and the conduction band overlap. So, you have empty states that are 

available for conduction, if we have 10
22

 atoms then each atom can denote 1 electron. So, you 

have a high density of electrons which leads to a high conductivity. 

Last class we also looked at the comparison of silicon with other semiconductors based on 

mobility. 
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So, we had three semiconductors, we looked at germanium, silicon and gallium arsenide. Let 

me write down their mobility values, μe and μh the units will be in cm
2
 v

-1 
s

-1
. Germanium is 

3900, 1900 for your holes. Silicon is 1350 for the electrons and 450 for the holes and gallium 

arsenide has a very high mobility for electrons, it is around 8500, holes is around 400. So, the 

question was if you want to increase the conductivity then what materials will you choose 

based on mobility. The answer is you will choose gallium arsenide because gallium arsenide 

has the highest mobility and we know that sigma is directly related to the mobility, but it 

turns out that the overriding factor here is ni, which is the concentration of electrons in holes, 

for that we also need the values for the band gap. So, let me write the values for the band gap, 

here Eg, this is in electron volts. So, germanium has a band gap of around 0.66 ev, this is at 

room temperature. Silicon is 1.10, gallium arsenide is 1.42. So, even though gallium arsenide 

has a higher mobility because it has a higher band gap, we find that the concentration of 

careers is lower because you have a lower concentration of careers, you will also have a 

lower conductivity. So, let us just do the math for gallium arsenide. 
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Once again we need the masses, the effective masses of the electrons and holes. So,   
  for 

gallium arsenide is 0.067 me, mh star is 0.50 me. 

Now, you can calculate Nc using the same equation that we used for silicon, Nc is around 4.3 

x 10
23

 m
-3

, Nv is 8.85, from Nc Nv and the band gap which is 1.42, we can calculate the 

intrinsic career concentration is 2.4 x 10
6
 cm

3
, correspondingly the conductivity is lower, 

which is 3.4 x 10
-9

. So, we find that in the case of gallium arsenide, intrinsic carrier 

concentration is lower, correspondingly the conductivity is lower. Just to complete this table, 

we will also do a similar calculation for germanium then we can come back and fill in the 

values for ni in terms of cm
3
 and also conductivity. 
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We already did this calculation for silicon. So, for silicon we had ni to be 10
10

 and then we 

had the conductivity for silicon to be 3 x 10
-6

. We just did the calculation for gallium 

arsenide. So, if you write the values for gallium arsenide ni is 2.4 x 10
6
, correspondingly 

conductivity is 3.4. So, let us do the calculation for germanium. So, then we can fill in these 2 

values as well. 
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So, in the case of germanium, once again I need the effective masses   
  is 0.12 me,   

  is 

0.23 me. So, once you know   
  and   

 , we can go ahead and calculate Nc and Nv. So, the 



formula is just the same you are just substituting different numbers, Nc is 1 x 10
19

 cm
3
, Nv is 

6 x 10
18

. So, the intrinsic career concentration, ni is nothing but Nc Nv      
   

   
 , which if 

you substitute the values give you an ni of 2.4 x 10
13

 cm
3
. So, ni is higher in the case of 

germanium. Similarly, you can calculate the conductivity; the conductivity works out to be 

0.0213. We can now fill in this information back in the table where we started. So, let me go 

to the table and fill in the values for germanium. You already did for silicon and gallium 

arsenide. So, in case of germanium, the carrier concentration is 2.4 x 10
13

 and the 

conductivity 0.0213. 

So, we had three semiconductors germanium, silicon and gallium arsenide. We found that 

gallium arsenide has the highest mobility, germanium is also higher than silicon, but the main 

term that really dominates the conductivity is ni, which is the career concentration and ni 

depends upon the band gap. So, higher the band gaps lower the carrier concentration, 

correspondingly lower the conductivity. Based on this graph or based on this table, if you 

want to choose a material with the highest conductivity then the preference goes to 

germanium. In fact, the first transistor or the very first solid state transistor that was built in 

Bell labs is actually made of germanium.  

One of the reasons, this silicon has now come to dominate the micro electronics industry is 

because we can actually control the conductivity and the electronic properties of silicon by 

doping. So, we will see doping next, more importantly silicon is much more abundant than 

germanium. So, silicon is the second most abundant element on earth. These are around 27% 

germanium, on the other hand, it is the fiftieth most abundant element. Its concentration is 

around 10
-6

%. So, this is the reason why silicon has come to dominate the micro electronics 

industry. The next thing I like to do is, in last class we never calculated the position of the 

fermi energy. So, we will go ahead and calculate where the fermi energy is located in an 

intrinsic semiconductor. 

Let us go ahead and draw the band picture. 
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We have energy on the y-axis, we have a valence band, the bottom of the valence band is 

referenced as 0 and the top of the valence band is Ev. Then we have a conduction band, the 

bottom of the conduction band is referenced as Ec and the top of the conduction band Ec + χ 

and this distance between valence and conduction band is Eg. We also wrote down 

expressions for n and p, n it was        
     

  
 , where Ef is the fermi energy; p is 

       
     

  
 . So, in last class we went ahead and multiplied these two terms in order to 

eliminate Ef. To calculate the value of Ef that is where the fermi energy is located the 

semiconductor, let us just equate n and p. So, we have        
     

  
  is equal to 

       
     

  
 . So, I have just equated n and p. So, we can take natural log on both sides and 

then rearrange this expression to give you the value of Ef, do that         
 

 
   

 
 

 
    

  

  
. 

So, this you can get by just rearranging this expression, since we are looking at an intrinsic 

semiconductor this is usually denoted as EFi. So, that this is the fermi energy of an intrinsic 

semiconductor. So, let me rewrite this expression. 
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So,          
 

 
    

 

 
    

  

  
. Now, Nc and Nv are also related to the effective masses of 

the electrons in holes, you have seen that expression before. 

Instead of Nc and Nv, we can substitute the effective mass and this expression will change as 

         
 

 
    

 

 
    

  
 

  
 , So, now, you have essentially 2 equations to calculate EFi, EFi 

is the position of the fermi level in the intrinsic semiconductor. So, let us do the calculation 

for silicon at room temperature, we can either use Nc and Nv that we calculated earlier or you 

can use the effective masses. So, let me use the effective mass   
  was 1.08 me,   

  is 0.60 

me.  

Since I am using the effective mass, I will use the second equation from which you get EFi, 

this Ev, the band gap of silicon is          
 

 
        

 

 
    

      

      
. If you simply this 

expression, this gives you Ev + 0.54 or writing this another way is EFi - Ev is 0.54. So, in the 

case of intrinsic silicon the fermi level is located approximately 0.54 electron holes above the 

valence band. So, if we try to redraw our picture for the energy band gap I will do that here, I 

have a valence band that is full, this is Ev have a conduction band that is Ec, Eg in the case of 

silicon is 1.1 and EFi is 0.54 above Ev, EFi which is the fermi energy is located very close to 

the center of the band. The actual center of the band from this value of Eg is 0.55 and the 

fermi energy is located at 0.54. So, EFi is very close to the center of the band. 



If   
  and   

  are the same, if these 2 are the same, which means Nc and Nv will also be the 

same then EFi will be exactly at Eg over 2 or, if temperature were 0. So, if T were 0 then also 

EFi would be exactly at Eg over 2. It is because, effective masses are different and because the 

effective density of states is different. It is slightly shifted from the center of band gap. So, 

what does this value for EFi mean. In the case of a metal, we define fermi energy as a line that 

separates the highest fill states and the lowest empty state. 
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So, if you have a metal we draw a band picture for a metal, this is your band the case of a 

metal your band was half full. So, that you had filled states and you had empty states and the 

fermi energy is separated, the filled and the empty states. Now, In the case of a 

semiconductor, we have a valence band that is completely full; we have a conduction band 

that is completely empty. So, the question is where do we put the fermi energy? Now to look 

at it, there is another way of defining fermi energy, Ef is related to the work function. We will 

call the work function ψ now ψ represents the energy that is required in order to remove an 

electron from a solid. So, if you go back to this band picture and we take the top of the band 

to be vacuum level then ψ represents the energy to remove an electron from fermi level up to 

the vacuum level. In case of semiconductors, we don’t have electrons independently; we 

always have electron hole pairs. So, in such a case, ψ represents the average energy that is 

required to remove an electron. So, because we have electrons and holes, electrons in the 

conduction band and holes in the valence band because these are linked. We find that the 

fermi energy in the semiconductor is located within the band gap because it represents the 



average energy to remove the electron. If as I said earlier, the effective mass of the electrons 

in the holes were the same, the fermi energy will be located exactly at the middle of the gap, 

but because   
  and   

  are different it is slightly shifted in the case of silicon. 

So, let us go back to an intrinsic semiconductor. We want to increase the conductivity of a 

material. In case of intrinsic semiconductor, we cannot change the carrier concentration at 

any given temperature right because the carrier concentration depends upon the band gap. 

What will do just to see the affect of temperature on ni.  
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We will go back to this expression for the carrier concentration          
   

   
 . Question is 

what happens when we increase the temperature, the temperature comes in 2 terms Nc and Nv 

also it depend on temperature. So, if we increase temperature Nc and Nv will also increase, 

but the dominant term where temperature plays a role is in the exponential term. So, as 

temperature increases     
   

   
  will drop because temperature is in the denominator. Both 

these affects, tends to increase the intrinsic career concentration. So, if you put these together 

ni will increase as temperature increases, but the dominant term is the exponential term. So, 

consider the case of silicon, where we have 2 temperatures T1 and T2 and there are 2 intrinsic 

career concentrations n1 and n2. In this particular case, you can calculate the ratio of n1 and n2 

by substituting them in this equation and also taking the temperature dependence of Nc and 



Nv into account will give you  
  

  
     

   

   
 . So, all I did was substitute for n1 and n2 in this 

expression and then divide. 
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Let me just rewrite that expression n1 over n2, but T1, if we have silicon and we increase the 

temperature from 300 kelvin to 600 kelvin. So, we double the temperature we want to know 

what the change in carrier concentration is at 300 kelvin, which is room temperature; n1 has a 

value of 10
10

 cm
-3

. You want to know what n2 is. So, we can substitute in the values and 

evaluate this expression. So, we get n2 which is the career concentration temperature equal to 

600 is 1.17 x 10
15

 to the 15. So, by doubling the temperature from 300 to 600 kelvin, you 

have increased the carrier concentration from 10
10

 to 10
15

, nearly 5 orders of magnitude. So, 

if you look at an intrinsic material or an intrinsic semiconductor, we only handle, changing 

the conductivity as long as we keep the material the same is temperature. To increase the 

conductivity we have to increase temperature. The problem though is most devices we now 

operate near room temperature or at room temperature. So, really we cannot increase the 

temperature beyond the normal operating temperature to increase conductivity it is for this 

reason that people go ahead and dope or add impurities to an intrinsic semiconductor, in order 

to form extrinsic semiconductors this increases the concentration of careers and thus 

increases the conductivity. So, with this we are done with intrinsic semiconductors.  

In next class, we will start to look at extrinsic semiconductors. Before we do the transition, let 

me just briefly recap few points for intrinsic semiconductors that we will carry forward. 
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So, we saw that in case of an intrinsic semiconductor n = p. So, electron in hole concentration 

is the same which is equal to ni. This generally can be written as n p =   
 . This is called the 

law of mass action, in the case of an intrinsic semiconductor, this relation n p =   
  is very 

trivial because n = p, but later when we look at extrinsic semiconductors, we will find that 

this relation is true. So, you can increase n, but at the same time you will have to decrease p, 

if you increase p, you will have to decrease n, you cannot increase both of them at the same 

time. We also saw that the intrinsic carrier concentration is a function of temperature and it 

depends upon the band gap, where ni is           
   

   
 ,. We saw that silicon, the dominant 

material in the semiconductor industry has an ni which is very small. So, only 10
10

 cm
-3

 

which means the conductivity was also very small the value for conductivity was, the only 

way we could increase the conductivity.  

If you still want to keep intrinsic, silicon was to increase the temperature, but increasing the 

temperature is not practical because the devices have to work at room temperature.  

So, the next thing we will see is to how to increase the conductivity by doping and these are 

extrinsic semiconductors which we will start in next class. 

 


