
Fundamentals of electronic materials, devices and fabrication 

Dr. S. Parasuraman 

Department of Metallurgical and Materials Engineering 

Indian Institute of Technology, Madras 

 

Lecture - 04 

Intrinsic semiconductors 

 

Let us start with a brief review of last class. In last class, we looked at 2 important 

concepts. 
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The first one is called the density of states; we denoted this as g(E). Density of states 

refers to the number of available states for electrons to occupy. We looked at a simple 

model, where we had a solid as a uniform three dimensional box with no potential. In 

such a case, we found that the density of states is directly proportional to the square root 

of the energy. So, thus as the energy goes up the total number of available states for the 

electrons to occupy also go up. We also looked at another concept, called the Fermi 

function, denoted by f(E). The fermi function tells you the probability of occupation of 

an energy state by an electron f(E) found is 
 

      
    

  
 
. We saw that temperature equal 

to zero Kelvin, if E is less than Ef, f (E) is 1, which means all the levels below the fermi 

energy are occupied. At E greater than Ef, f(E) is 0, which means above the fermi energy 

all the levels are unoccupied and we saw that for all temperatures at energy E equal to Ef, 



f(E) is half. 

When the energy is much higher than kT, we can approximate the fermi function by a 

Boltzmann function. So, this becomes exponential minus E - Ef over kT, which is the 

Boltzmann function and this is true. So, this is what we looked at last class. We will use 

these concepts of density of state and fermi function, in order to calculate the electron 

whole concentration in semiconductors and first we will start with intrinsic 

semiconductors. 
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We will start with intrinsic semiconductors and other name for this is a pure 

semiconductor. We will use the concepts of the density of states and fermi function to 

calculate the carrier concentration that is the electron whole concentration. We will also 

define concepts of electron mobility and conductivity. Once we are done this for the 

intrinsic semiconductors, we will move on to extrinsic semiconductors. 

So, what are intrinsic semiconductors? These are materials I will just say semiconductors 

within bracket that are single crystals and have no impurities or defects. We will see later 

why it is important that there should be no impurities or defects? 

Most of what we do, we will reference using silicon as the material because silicon is the 

dominant material in today’s micro electronics industry, but all the concepts that we 

developed can be equally applied to other semi conductors and later when we look at 



examples, we will also look at other materials to compare and contrast with silicon, but 

for the most part, we will deal with silicon. As opposed to intrinsic I mentioned earlier 

that you also have extrinsic semiconductors, these are doped semiconductors. If you look 

in terms of applications, extrinsic semiconductors are almost always used. Intrinsic 

semiconductors do find some applications, but not a whole lot. Mostly intrinsic 

semiconductors are used as optical sensors, in the case of photo luminescence 

experiments or as sensors for x-rays in electron microscopes. So, these are sensors which 

are called energy dispersive x-ray analysis. Usually, in those cases either intrinsic silicon 

or germanium is used cooled to around liquid nitrogen temperatures, but for most 

applications extrinsic semiconductors are preferred. 

We will start with intrinsic first and once we develop these concepts we will go on to use 

them, to understand extrinsic semiconductors. So, let us start with intrinsic silicon. 
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As we saw earlier, the electronic configuration of the outer shell of silicon is 3s
2
 3p

2
. 

There are total of 4 electrons, the s and the p orbitals hybridize to give you 4 sp
3
 hybrid 

orbitals and we later saw that these orbitals when they form a solid give you a valence 

band that is completely full and a conduction band that is completely empty. I will show 

this band diagram here. You have a valence band that is completely full you have a 

conduction band that is empty. The y-axis here refers to energy; usually the energy is 

referenced with respect to the bottom of the valence band. So, the bottom of valence 



band is given 0, Ev denotes the top of the valance band and Ec denotes the bottom of the 

conduction band. The difference between the top of the valence band and the bottom of 

the conduction band is the band gap. We call Eg in the case of silicon at 0 kelvin, Eg has a 

value of around 1.17 electron volts at room temperature. Eg slightly lower is around 1.10 

electron volts. 

The top of the conduction band is usually denoted as Ec + χ, where χ is the electron 

affinity. For silicon χ has a value of around 4.05 electron volts. So, at 0 kelvin, you have 

a valence band that is completely full and a conduction band that is completely empty at 

any temperature above 0 kelvin. We saw earlier you will have thermal excitation of 

electrons, so that electrons from the valence band can move to the conduction band and 

living behind holes. So, at any temperature greater than 0 kelvin, you have electrons in 

the conduction band and holes, which is the absence of electrons in the valence band. 

We also saw that apart from thermal excitation, we can also use light in order to excite 

carriers across the band gap. If Eg is the band gap of the material, the wavelength of light 

that is required in order to excite carriers is nothing, but hc/ λ. We can do this calculation 

for silicon, where we find that λ is approximately 1000 nanometers and this lies in the IR 

region. As long as we shine light with a wavelength that is less than 1,000 nanometers, 

which means the energy will be higher than the band gap you can always excite carriers 

from the valence band to the conduction band. So, this explains, while silicon is opaque 

because visible light has a wavelength less than 1000 nanometers, the visible range is 

from 400 to 800 nanometers, which means silicon will be able to absorb the visible light 

and produce electrons and holes. Similarly, SiO2 which is glass has band gap of 

approximately 10 electron volts. 
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So, if we have SiO2 has a band gap approximately 10 electron volts, which means the 

wavelength that is required to excite electrons from the valence band to the conduction 

band is approximately 106 nanometers. So, ten times less than that of silicon, this lies in 

the UV region which again explains why glass is transparent. So, coming back to silicon 

here is the picture we have at room temperature. 
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We have electrons in the conduction band, we have holes in the valence band and these 

electrons and holes are set to be delocalized that is they can move through the solid. The 



process of formation of the electrons and holes is a dynamic process that is electrons and 

holes are constantly being formed. At the same time electrons also fall back to the 

valence band and recombine with the holes, so that they are also getting eliminated. The 

formation and recombination takes place, so that we can say, this is a dynamic process. 

We have an equilibrium concentration of electrons and holes and this concentration 

depends upon the temperature, in say we have an equilibrium concentration of electrons 

and holes and this is temperature dependent. When we apply an electric field these 

electrons and holes can essentially move. 

(Refer Slide Time: 14:30) 

 

So, I will just show schematically a solid of silicon, you have electrons, you have holes, 

you apply an electric field. In the electric field, electrons will go in the direction opposite 

to the field, holes will go in the direction of the field and finally you will have a current. 

The current is because the electrons move in the conduction band and the holes move in 

the valence band. What are the factors on which the current depends on? Let us look at 

that next. 
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Current or if you want to think about it Conductivity, in the case of an intrinsic 

semiconductor depends upon two factors; the first one is the concentration of electrons 

and holes that are available. So, more the electrons and holes, higher is the conductivity 

concentration of electrons and holes we can denote conductivity by the symbol sigma 

and I will just say that if concentration increases, your sigma will also increase. 

The next factor on which the conductivity depends on is how far these electrons and 

holes can travel before they get scattered by the lattice. So, remember you have electrons 

that are moving in the conduction band and you have holes that are moving in the 

valence band, but these are moving through a solid of silicon atoms. If you are looking at 

intrinsic silicon and all these atoms are vibrating which means these electrons and holes 

can interact with these atoms and gets scattered. In the case of a semi conductor these 

electrons and holes are set to drift through the material. To understand this, we define a 

quantity that we call the mobility, mobility is denoted by the symbol μ and the expression 

for μ, if you are looking at electrons you can say μe is nothing but τe over   
 . You can 

write a similar expression for holes μh. So, μe depends upon a factor, τe and the effective 

mass of the electron, τh depends on a factor, τh and the effective mass of the holes. So, μe 

and μh are the mobilities, the factors τe and τh refers to the time between two scattering 

events. So, if τe and τh are large which means time between two scattering events is large, 

the electrons can travel a large distance before scattering. In such a case, if these two are 

large your mobilities are also large and hence the conductivities is also higher. So, we 



can say if μe and μh increases and they would increase, if the scattering is less the 

conductivity increases. So, we saw that the conductivity depends on two terms, one is the 

concentration the other is the mobility. We can put these together to write an equation for 

the conductivity. 

So, if σ is the conductivity, sigma is nothing but n e μe + p e μh. Now, this is a very 

important equation which relates the conductivity to the electron concentration and the 

mobility. 
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And this equation is true, whether you have an intrinsic semiconductor or an extrinsic 

semiconductor, n and p refers to the concentration of electrons in holes, which is the first 

factor that we saw earlier. e is the electric charge, which is 1.6 x 10
-19

 coulombs. So, that 

is content and μe and μh are the mobilities of electrons and holes. If you look at this 

expression, higher the concentration, so, higher n and p, your mobility is higher. 

Similarly, higher μe or μh, the conductivity is higher. The typical units for mobility are 

meter square volts per seconds. So, units for mobility can either use meter square per volt 

per second. You will also find that some books give values in centimeters square volts 

per second. 

Let us take look at the mobility values for silicon. You have silicon μe, which is the 

mobility of the electron in the conduction band is around 1350 centimeters square volts 

per second. If you want to convert this to SI units, you just divide by 10
4
. So, this is 



0.1350 mu h, which refers to the mobility of the holes in the valence band slightly 

smaller. So, around 450 cm
2
 V

-1
 s

-1
 or you can divide this by 10

4
, the top one should be 

1.350, just rewrite that. So, these are the values of conductivity. In the case of silicon for 

both electrons and holes, we define mobility as the ability of the electron to move 

through the material before being scattered. We also saw that the mobility depends upon 

the scattering time. We will use this to do some calculations for the scattering time. So, 

consider the case of silicon, and we will only talk about electrons and use the similar 

calculations for the holes, consider the case of silicon,  when μe is 1350. 
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We also said earlier that, mu is related to the scattering time. The expression was e τe 

over   
 , just rearranging the terms gives you τe. So, all I did was take this term here and 

then bring e down. In the case of silicon,   
  is around 0.26   , where    is the mass of 

an electron and    has a value, we can substitute the numbers here to get the value for 

τe. So, 1350 and multiply by 10
-4

, convert to SI units. If you do the math, τe works out to 

be 2 x 10
-13

 seconds or 0.2 picoseconds, where 1 picosecond is 10
-12 

seconds. So, this 

time 0.2 picoseconds represents the time between two scattering events for an electron in 

silicon, that is moving through the conduction band. So, τe refers to the time between two 

scattering events and since you are talking about the electron this is for the electron in 

the conduction band, we will also like to calculate the distance the electron travels 

between these two scattering events or the distance electron travels in this time of 0.2 

picoseconds. 
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If we look at in electron with a mass given by m e and velocity that is given by v t h then 

the kinetic energy is nothing, but one half m v square. This is the kinetic energy of an 

electron. In case of most solids, we can say that the kinetic energy is approximately equal 

to the thermal energy, this is approximately equal to 3/2 kT, where k is the Boltzmann 

constant, k has the value 1.38 x 10
-23

 joules per kelvin. Equating this expression, we can 

find value for v thermal or the velocity of the electron which is nothing, but  
   

  
can 

again plug in all the numbers. We are doing this calculation at room temperature. So, 

temperature is 300 kelvin, if you do this v thermal works out to be 1.16 x 10
5
 m s

-1
 . So, 

we calculated v thermal to be 1 x 10
5
 per second. Earlier we saw that the time between 

two scattering events was 2 x 10
-13

 seconds or 0.2 picoseconds. So, the distance travelled 

by the electron between two scattering events is nothing but v thermal times tau, which if 

you do the math is around 2.33 x 10
-8

 m or approximately 23 nanometers. To put this into 

perspective, we can say that the lattice constant for silicon is 0.54 nanometers. So, the 

distance traveled in terms of lattice constant is 23/0.54, which if you see is 

approximately 43 unit cells. So, the time between two scattering events is really small, so 

the time is of the order of picoseconds, but because your electrons are of such a high 

velocity, the velocity is around 10
5
 s

-1
. We find that the electron actually travels a 

substantial distance, it travels nearly 40 unit cells before it under goes another collision 

and then scattering. Mobility is usual a function of temperature. It also can be thought of 

as a material property as long as you do not add any impurities. 



Later when we look at extrinsic semiconductors, we will find that increasing the 

concentration of the dopants, decreases the mobility. You can compare the mobility of 

silicon with some other semiconductors to see the values. 
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I will leave the expression for the sigma up here. We saw that the mobility of an electron 

in silicon was around 1350 cm
2
 V

-1
 s

-1
, this is for silicon. If you had germanium, 

germanium has a slightly higher mobility, μe is 3900, that is the value for germanium. 

Gallium arsenide is even higher. If you want to improve the conductivity of a material 

and you are asked to choose materials in order to have higher conductivity. Just based 

upon the mobility values, the choice would be gallium arsenide because gallium arsenide 

has the highest value 8500, which is nearly 6 times or 7 times higher than that of silicon, 

but if you look at the expression for sigma, it not only depends upon the mobility, it also 

depends upon the concentration of electrons in holes. So, the next thing we will do is to 

calculate the electron in hole concentration as a function of temperature. 

So, In last class, we looked at the concept of the density of states and the fermi energy 

putting those two concepts together you can say that the concentration of electrons in the 

conduction band is nothing but the integral over the entire width of the band of the 

density of states in the conduction band. I call that      (E)  f(E) dE to put this into 

words. 
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If you want to find the number of electrons in the conduction band at any given time 

temperature it is going to depend on the number of states that are available in the 

conduction band, which is      (E), the density of states and the probability that those 

states are occupied by the electron, which is f(E). If you look at a conduction band, the 

width of the conduction band you saw earlier goes from Ec to Ec + χ, where χ is the 

electron affinity. It goes from Ec, Ec + χ.     , which is the density of states times the 

fermi energy dE. Now, we want to calculate the density of states and silicon is a real 

crystal, but we can make use of the assumption of a solid with a uniform potential, which 

we did earlier for a solid with a uniform potential the density states, e is given by 

       
 

  , which is the effective mass of the electron in the conduction band times E
1/2

 . 

So, this expression we saw earlier for a solid with a uniform potential a 3D solid and we 

will use that expression to find the density of states for electron in the conduction band 

of silicon.  

Since we are looking at only the conduction band, E here must be written with respect to 

the bottom of the conduction band. So, we will modify this expression      and write it 

as 
       

 
 
 

  , and instead of E, we will write it as (E-Ec)
1/2

. So, that you are writing the 

energy with respect to the bottom of the conduction band f(E) is 
 

      
      

  

. Usually, in 

the case of silicon and you will actually show explicitly, later on E-Ef will be of the order 



of electron volts or a point greater than 0.5 electron volts, kT is usually of the order of 

mev. We can approximate the fermi function as a Boltzmann function and write this 

    
       

  
. So, this expression approximates to this one. In the case of the silicon semi 

conductor our limits where the width of the band that goes from Ec to Ec + χ for ease of 

integration, we can replace the Ec + χ term with infinity this is also true because we will 

find that most of the electrons are located very close to the bottom of the conduction 

band. So, we can take the top of the conduction band to be infinity and we will not lose 

much in the model. So, we will replace Ec + χ with infinity. Let me then rewrite this 

expression again.  
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If you rewrite this n, which is the number of electrons in the conduction band goes from 

the base the conduction band Ec up to infinity, the density of states times the fermi 

function dE, where the density of states is given by this expression   
     (E -Ec)

1/2
 and 

f(E) you will use the Boltzmann approximation and write it as exponential 
    

  
. We can 

substitute these two in this expression and do the integration, I will not show the 

integration explicitly, but write down the final result. When we do this, we get n is equal 

to Nc, which is constant at a given temperature times     
        

  
, Nc is nothing but 

  
    

   

  
 
   

. This term Nc is called the effective density of states at the conduction 

band h. So, n depends upon the effective density of states at the conduction band, h times 



an exponential function.  

Whatever derivation we did for electrons, we can equally do for holes in the valence 

band. I won’t do the derivation for holes, but I will just write down the expression for 

holes, p which is the concentration of holes in the valence band is Nv, which is a constant 

times     
        

  
, Nv is      

 . So, instead of me it is  
  

   

  
 
   

. This is the effective 

density of states at the valence band h. So, we have two expressions, one for electrons 

and one for holes. These expressions one for electrons and one for holes give you the 

concentration of electrons in the conduction band and holes in the valence band for a 

given semiconductor as a function of temperature. 
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Let me just rewrite those two expressions, this Nc exponential and p is Nv     
        

  
, 

we can mark the position of Ec and Ev in the band diagram. So, if you draw this, you 

have a valence band. The base of the valence band is set as zero, the top of the valence 

band is Ev, when you have a conduction band, the base of the conduction band is Ec, the 

top of the conduction band is Ec + χ and the difference between the valence band and the 

conduction band is the band gap. So, here is your expression, we know all these values 

Nc, Nv, Ec, Ev, we can calculate the concentration of electrons in holes. If you look at 

these expressions the fermi energy term Ef  is in there, but I have not marked where the 

fermi energy is. So, if you do not know where e f is you will not be able to calculate n 



and p.  

So, let us go ahead and eliminate Ef, where multiplying n and p together. If you do that, n 

p will be          
        

  
, all I have done is multiplied these two together,  Ec - Ev. If 

you see from this band diagram, this whole thing is Ec, this is Ev. So, Ec - Ev is nothing, 

but the band gap. 

This I can replace          
     

  
. In the case of an intrinsic semiconductor your 

electrons are created because they are excited from the valence band to the conduction 

band and whenever an electron is created a hole is also created. So, in the case of 

intrinsic semiconductors n, which is the concentration of electrons is equal to p, which is 

the concentration holes and this is usually denoted as ni. ni is called the intrinsic carrier 

concentration. So, for an intrinsic semiconductor n = p = ni, if you make use of the fact 

that n = p. 
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When we can rewrite the expression n p is nothing, but   
  which is the square of the 

intrinsic carrier concentration that is equal          
     

  
 and then taking square root 

you get ni          
     

   
, this is expression for the carrier concentration. So, the 

concentration of electrons and holes in an intrinsic semiconductor as a function of 

temperature, we saw that the conductivity equation is nothing, but n e μe + p e μh. In the 



case an intrinsic semiconductor n = p = ni. So, we can take this term outside, it is ni e μe 

over μh. So, the conductivity depends on the sum of the mobilities or both the electron 

and the whole in the case of an intrinsic semi conductor. 

So, this is where we will stop for today. In the next class, we will start by calculating 

these values for the intrinsic carrier concentration and the conductivity for silicon, when 

we look at, how changing the material will change these values? Then we will proceed 

from there. 

 


