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Assignment - 3  

Extrinsic semiconductors 

 

In today’s assignment, we will be looking at Extrinsic semiconductors, Assignment 3. In 

assignment 2, we focused exclusively on intrinsic or pure semiconductors. Today we will 

be looking purely on extrinsic semiconductors. So, before we look at the numeric 

problems let me do a brief recap. Extrinsic semiconductors are also called doped 

semiconductors. 
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So, The whole process of doping is to selectively increase your carrier concentration. So, 

either n or p, the law of mass action is something that has to be obeyed. So,   
 , where ni 

is your intrinsic carrier concentration must be equal to n p. So, If we doped with donor 

type impurities to increase the concentration of electrons, so if n goes up, p has to go 

down and similarly, if p goes up by doping with acceptors then n has to go down. 

We also saw the conductivity equation last time sigma is n e μe + p e μh. In the case of an 

extrinsic semiconductor, we usually dope such that either n is much greater than p or p is 

much greater than n either way only one of these terms will usually dominate. So, the 



conductivity will be either due to the motion of electrons or due to the motion of holes in 

case of an extrinsic semiconductor once again because, we do not have equal number of 

electrons in holes. The fermi level will shift from the center of the gap it will shift closer 

to the conduction band for an n-type semiconductor and closer to the valance band if it is 

a p-type semiconductor. This will also depend upon the temperature and whether all the 

donors or acceptors are ionized. These are some of the concepts that we will touch in 

today’s assignment. 

Let me look at question one. We have a group 4 semiconductors is doped with donor 

atoms ND, the donor atom concentration is 10
18

 cm
-3

, the intrinsic carrier concentration is 

given. So, ni is given 2.3 x 10
13

 cm
-3

, the values of Nc and Nv, the effective density of 

states is also given. So, Nc = Nv = 7 x 10
-10

 to the 19 cm
-3

. so, the sample is essentially at 

room temperature. Temperature T is 300 kelvin. So, the first questions says what is the 

hole concentration at 300 Kelvin. It is doped with donor ions. So, it is an n-type 

semiconductor. So, n is equal to ND at room temperature the impurities are usually fully 

ionized. So, n is equal to ND = 10
18

. To calculate the hole concentration we can use the 

law of mass action. So, n p =   
  the value of ni is also given, p works out to be 5.3 x 10

8
 

cm
-3

. So, the concentration of holes is much smaller, nearly 10 orders of magnitude 

smaller than that of the electrons. 

What is the band gap of the semiconductor? So, To calculate the band gap we can 

actually use the intrinsic equation, which we saw in assignment 2. So, ni is  

       
   

   
. So, Nc and Nv values are given temperature is known, ni is known. The 

only thing that is remaining is Eg and Eg is 0.772 electron volts. We can sought of make a 

guess that the material is germanium, but germanium usually has a band gap of around 

0.67 because in this particular problem we have taken Nc is equal to Nv and that is not 

true for germanium, but this is the band gap. The band gap is a low value we can see that 

because ni is around 10
13

, for pure silicon the value of ni at room temperature is 10
10

. So, 

you have calculated the hole concentration and also the band gap. Then you want to 

know the position of the fermi level in the doped semiconductor with respect to the 

intrinsic firmer fermi level. 
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So, EFn - EFi, EFn is a position of the fermi level in the type semiconductor, EFi is a 

position in the intrinsic semiconductor is nothing, but     
 

  
. In this particular case n is 

nothing, but ND. So, we can substitute all the values, we can use k in the SI units, but 

then we need to divide by 1.6 x 10
-19

. So, that we convert it back to electron volts and if 

you do this     EFn - EFi is 0.276 electron volts. 

In this particular case Nc = Nv, we can also calculate and absolute value for EFi which is 

nothing, but 
  

 
, E g is 0.772. This is nothing, but 0.386. So, we can substitute for the 

value of EFi here and get the position of the fermi level with respect to the valence band 

as well. 
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So, let us now move to question number 2. So, we have a semiconductor with the value 

of ni. 
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So, ni is 10
16

 m
-3

. This we can keep as meter cube or you can convert it to centimeter 

cube. So, this will be 10
10

 cm
-3

, but for now we will just work with m
-3

. A semiconductor 

with ni equal to 10
16

 m
-3

 is doped with acceptor impurities. The concentration of acceptor 

impurities is also given NA is 10
23

 m
-3

. 



Donor impurities basically produce electrons if we go back to the class; donors are 

typically group 5 elements. So, If we think about silicon donor impurities are phosphorus 

arsenic, antimony which donate the extra electron acceptor impurities are elements like 

boron, aluminum and gallium which accept the extra electron from silicon and create a 

hole. So, acceptor impurities produce excess holes donor impurities produce excess 

electrons, so, we have acceptor impurities. So, Once again we want to calculate the 

electron and hole concentration, So, the temperature is given is 300 Kelvin, So, NA is 

fully ionized. So, all the acceptors are ionized. So, p which is the hole concentration is 

equal to NA is equal to 10
23

 m
-3

. We can again use the law of mass action n = 
  
 

 
. So, we 

can do the numbers n is 10
9
 m

-3
. 

If you want to convert these to cm
3
 divide by 10

6
. This is 10

3
 cm

-3
 and this is 10

17
 cm

-3
 

assuming that the effective masses in part b. So, assuming that the effective masses of 

electrons and holes are equal to the free electron mass, calculate Eg the band gap and Ef, 

the position of the fermi level, this is part a. In part b, we are given that   
 which is the 

effective mass of the electron which is   
  is nothing, but me is a rest mass of the 

electron. So, once again we have to calculate Eg. We know the value of ni, So, ni is 

        
   

   
. The thing here is we are not given the values of          , but these can 

be calculated from the mass of the electrons and holes. So, Nc is nothing, but    

  
    

   

   
   

, Nv is      
    

   

   
   

. So,   
  and   

 values are given they are equal 

to the mass of the electron. We can evaluate Nc and Nv. So, Nc = Nv and it is equal to 2.5 

x 10
25

 m
-3

. So, You can convert this to cm
3
 as well you will just have to divide by 10

6
. 

Now, we know the values of Nc and Nv, ni is known, ni is given to be 10 the 16. So, we 

can go ahead and calculate Eg the value of Eg is 1.12 electron volts. Once again the 

material that we are talking about here is silicon; we can clearly see that ni is 10
10

 cm
-3

, 

which is what the room temperature intrinsic carrier concentration of silicon is. So, We 

now have to calculate the position of the fermi level; this is a p-type material because we 

have acceptors rather than donors. In the case of donors, the fermi level moves closer to 

the conduction band. In the case of acceptors, the fermi level moves closer to the valence 

band. So, EFp - EFi is nothing, but      
 

  
. So, p we known, ni is known, So, we can 

substitute and this is minus 0.42 eV. So, This is below the intrinsic fermi level and it is -

0.42 eV below the fermi level. We can calculate the value of EFi, EFi is nothing, but just 



Eg/2. So, Eg is calculated to be 1.12. So, EFi is 0.56, so that we can substitute here that 

gives you EFn is nothing, but EFi - 0.42, which is 0.14 eV above the valence band. 

So, In a way problem 2, the part b is very similar to what we did in problem 1 except that 

now we all have acceptor impurities instead of donor impurities. So, in part c questions 

says donor impurities are now added to a concentration of 5 x 10
22

, what are the new 

values for the 4 quantities calculated above. 
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So, We now add donors and the concentration ND is 5 x 10
22

 m
-3

. The sample already has 

acceptors, acceptor concentration NA is 10
23

 m
-3

. So, This is an example of compensation 

doping where we have both donors and acceptors. 

In this particular case, NA is greater than ND, so, ultimately the material becomes p-type 

and the concentration of holes is just NA - ND. So, p is 5 x 10
22

 m
-3

 n. We can calculate as 

before again using the law of mass action 
  
 

 
, which is 2 x 10

9
 m

-3
. We can go ahead and 

calculate the position of the fermi level. So, EFp we can repeat the calculation that we did 

before, except using the new values of p. So, EFp if we calculate becomes 0.16 electron 

volts above ev. The band gap will not change because the band gap is calculated based 

on the intrinsic values, but because the values of p and n change the position of the fermi 

level will change. 

So, let us now move to question 3. 
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Question 3: Using the hydrogenic model, how much energy is required to ionize a donor 

atom in a semiconductor with a dielectric constant of 10 and an electron effective mass 

that is only 30 percent of the free electron mass? So, we look at the ionization energy of 

a donor or an acceptor earlier, we found that these donor levels are close to the 

conduction band and the acceptor level is close to the valence band and typical ionization 

energies are of the order of tens of milli electron volts. This is why these levels are 

usually fully ionized at room temperature. 
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So, to look at the ionization energy Eb, we typically used a hydrogenic model, but we 

modify the mass of the electron and also the dielectric constant. So, the equation for that 

is something similar to what we worked out in class is -13.6 
  

 

  
 
 

  
 , this answer will be in 

electron volts. So, 13.6 is the ionization energy for the hydrogen atom this value is in 

electron volts 
  

 

  
  is nothing, but the electron effective mass. In this particular problem, it 

says the electron effective mass is 30 percent of the free electron mass. So, 
  

 

  
  is 0.3     

is the relative permittivity of the semiconductor, So,  again for this particular problem the 

permittivity or the dielectric constant is given as 10. So, we have all the values that we 

need we can substitute that and evaluate Eb and Eb. If we calculate comes out to be -41 

milli electron volts, So, this is the ionization energy of the donor atom. So, This is the 

energy that is required to remove the electron from the donor atom and take it to the 

conduction band for comparison the thermal energy of an electron at room temperature is 

25 milli-electron volts. So, at room temperature it is possible to easily ionize the donors 

and take the electron to the conduction band. 

In the next problem, In problem 4, we will look at those calculations explicitly. In part 2 

of problem 3, we also need to calculate the Bohr radius of the donor atom. So, once 

again we are using the hydrogen model and you want to calculate the Bohr radius, the 

hydrogen model the Bohr radius ao is given by the expression 
   

 

     
 . This is again based 

on calculations and the Bohr radius works out to be 0.53 A°. 

So, In this particular case, we can use the same expression, at   . So, for the donor atom, 

the Bohr radius, I am going to call it   
  is nothing but      

 . So, we replace    by    

times   and    is replaced by   
 . So, The expression is the same except that we are 

adding the dielectric constant and also the electron effective mass. So, We can plug in 

these numbers and this gives you a Bohr radius of around 18 A° the way to think about 

this is that this represents the influence of the donor electron. So, it represents a size of 

the influence of the donor electron. 

So, In the case of an extrinsic semiconductor we usually treat these donor levels as 

individual atomic levels. So, The concentration is usually of the order of part per million 

or parts per billion, so that we treat them as individual atomic levels, but if we keep on 

increasing the concentration of the donors then these atomic levels will come together 



and when 2 donors see each other, which means when the distance between them comes 

to be less than 18 A°, then they will start to interact and they will form a band. Usually, 

this high concentrations donor formed instead of single atomic levels a donor energy 

band which can then overlap with the conduction band. So, these types of 

semiconductors are called Degenerate Semiconductors.  

So, to calculate the number of dopants or the dopant concentration when we have 

degenerate semiconductors, So, I will call it donor overlap, it is nothing, but 1 over the 

volume of the dopant atom. I will put the word atom here with in parenthesis to actually 

talk about this sphere of influence of your donor. So, this is nothing, but 
 

 

 
   

  
. This 

particular value works out to be 4.1 x 10
19

 cm
-3

. 

So, At this concentration and at higher values of concentration your donor atoms are 

essentially too close, so that the atomic levels mingle and we have a donor band. So, This 

determines the conditions performing a degenerate semiconductor. So, when the 

concentration is greater than 4.1 x 10
19

 cm
-3

, we get a degenerate semiconductor. So, 

This is a simple back of the envelop calculation where we use the effective Bohr radius 

of the donor atom to calculate the concentration, where we get a degenerate 

semiconductor. 

Let me now go to problem 4. 
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With 10
15

 phosphorus atoms, phosphorus is a donor. So, ND is 10
15

 cm
-3

. The donor 

energy level for phosphorus in silicon is 0.045 ev below the conduction band edge. So, 

ΔE, which is your donor ionization energy, is 0.045 ev or 45 milli ev and this is below 

the conduction band. So, CB is your conduction band. 

So, Where is the fermi level located at 0 Kelvin? SoT = 0 Kelvin. We want to know the 

position of the fermi level. So, at low temperatures, if you think about the model so, let 

me draw schematic of the band diagram. This is Ec, this is Ev the material is silicon. So, 

your band gap is typically 1.10 electron volts. We have a donor level there is very close 

to the conduction band edge, so, this is your donor level and this energy is 0.045 ev. So, 

the diagram is not to scale, but this just shows you that the donor level is very close to 

the conduction band. So, At 0 Kelvin the donor level is not ionized, so, we basically have 

electrons. Here the valence band is at a much lower energy level. So, we can sought of 

ignore the valence band and we can treat this as an intrinsic semiconductor with the 

donor level being the valence band and the conduction level being the conduction band 

of silicon. 

So, In this particular case EF will be located between the donor level ED and the 

conduction level Ec. This is nothing, but your donor level. So, let me mark that here as 

ED and the temperature is 0 Kelvin. So, If you use this expression, EFi is 
  

 
     . So, 

 

 
    

  
 

  
  temperature is 0 Kelvin. This term goes to 0 Eg is nothing, but ΔE which is 

0.045 electron volts, so that EFi is half of that. So, 0.225 electron volts right in the middle 

of the donor level and the conduction band. 

This is part a in part b, at what temperature is the donor 1 percent ionized and where is 

the fermi level located at this temperature? So, we start at 0 Kelvin, where we have a 

donor level that is completely that is not ionized at all and the conduction band that is 

completely empty we then start to increase the temperature, so that electrons from the 

donor level start to move and occupy the conduction band. So, We can again treat this as 

an intrinsic semiconductor. So, concentration of electrons is nothing Nc ND/2 and the 

reason for the 0 is because these are individual atomic states. So, they can only take 1 

electron -ED or             –ΔE/2kT. So, We are using the expression for an intrinsic 

semiconductor except that instead of writing Nv, we write ND/2 and ΔE is the ionization 

energy n the question says is 1 percent ionized 0.01 ND. So, everything else is known 



except for the temperature. So, This we can substitute in, so temperature we can calculate 

to be 29 kelvin. All we have done is to take the expression for an intrinsic semiconductor 

and then modify it. We can calculate the position of the Fermi level, So, EFi once again 

we can use the expression for an intrinsic semiconductor. So, it is 
  

 
 

 

 
 and we will use 

the effective density of states, so,   
  
  
 

. So, Once again if you plug in the numbers this 

works out to be 10.1 milli electron volts and this is above ED.  

So, Let us look at, part c. At what temperature does the fermi level lie in the donor 

energy level? The fermi level is complete; when the donor is completely ionized, EF will 

be at ED. So, EF will be equal to ED when the donors are completely ionized. 
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So, Once again n is equal to ND is a 
     

 
   

    

   
 . So, Everything else is known 

except for the temperature. So, the temperature gives calculation gives you a temperature 

of 61.3 kelvin. So, at a relatively low temperature of around 60 kelvin, you get the 

donors to be completely ionized. So, estimate the temperature when the sample behaves 

as if it is intrinsic when the samples behaves like an intrinsic semiconductor n is around 

1.1 ND. So, if we go back to the nodes we say that the sample is intrinsic when the 

electron concentration is 10 percent more than the donor concentration. 



So, We have a regime between saturation and this is your saturation temperature and the 

intrinsic temperature where the concentration of electrons is within 10 percent of the 

donor concentration. So, n is 1.1 ND, p is nothing but 0.1 ND, this is something we can 

get by just doing a charge balance, so that the net positive charge must be equal to the net 

negative charge. n p =   
  which means ni is 0.33 ND, this is your intrinsic carrier 

concentration. So, this is now Nc Nv and these are the conduction and the valence band of 

the silicon 
    

   
. 

We can substitute the numbers; temperature T is around 618 kelvin. So, the question also 

gives you the density of states. Now the value of Nc and Nv Eg is known, so, the only 

thing that is unknown is temperature. So, This temperature T is called your intrinsic 

temperature. This is called your saturation temperature, so that within the between the 

saturation and intrinsic your concentration of electrons which is your majority 

concentration is within 10 percent of the donor concentration  

Part e, you are asked to sketch a schematic. So, In part e sketches schematically the 

change in fermi level with temperature. Let me just draw it here. So, this is your 

conduction band Ec, this is the valence Ev, these are my donor levels ED. So, just for 

schematic let me take this to be a temperature access and this is the center of the band 

gap Eg/2. So, at zero kelvin your fermi level start to be here as a temperature raises 

electrons start to go from the donor level to the conduction band the fermi level drops at 

some particular temperature which is Ti or Ts the saturation temperature the donors are 

completely ionized and then the fermi level start to fall down and at really high 

temperatures it becomes equal to Eg/2. So, this temperature is Ti and within this 

particular regime your co electron concentration is almost a constant.  

Let us now look at the 5th problem. 
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So, We have an n-type silicon, which is doped with phosphorus atoms. 
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So, ND is 10
17

 cm
-3

, the drift mobilities of electrons and holes in silicon depend upon the 

total concentration of the dopant and the expression is also given. Usually, we take the 

drift mobility to be a constant, but actually with increase in doping especially in extrinsic 

semiconductors the mobility actually decreases. You have seen this in class, this is 

because we have the electron or the hole being scattered by the ionized donor or the 



acceptor. So, In this particular case, μe is given to be     
    

                      
 the units 

are                   cm
2
 V

-1
 s

-1
. 

So, In the first part, we want to calculate the room temperature conductivity. So, we 

know n is equal to ND it is an n-type semiconductor. So, p is    
     is usually much 

smaller than n. If it is silicon, ni is 10
10

. So, you can actually work it out p comes to be 

10
3
. So, In this particular case, conductivity σ is n e μe + p e μh p is much smaller than n. 

So, this term goes off. So, This is nothing, but n e μe, we can plug in the numbers to 

calculate μe we plug in the dopant concentration which is 10
17

 and you get the value of 

μe. So,  If you do that, the value of σ comes to be 13.2 Ω
-1

 cm
-1

.  

In part b, we want to do compensation doping in this system. So, we are going to add 

acceptors to make this sample p-type with having the same conductivity value. So, Now, 

we have a p-type semiconductor and we do this by adding acceptors NA and this must be 

greater than the donor concentration ND. So, p in this case is nothing, but NA - ND and 

conductivity σ is p e μh. So, There is a similar expression for μ for the p-type or similar 

expression for the mobility for the holes μ is 54.3 + 4071 + 3.745 18 Ndopant. 
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So, The important thing to remember here is that, this is the case where we have acceptor 

and donor impurities. So, the total dopant concentration in part b is equal to NA + ND. So, 

We use the same equation σ; it is now p-type. So, it is p e μh p is nothing, but NA -ND and 



ND we know mu h we can use this expression except that n dopant will be NA + ND. So, 

What we have is an equation where everything is known except for n a. We can simplify 

this expression, I won’t go through the math, but this is essentially a quadratic equation 

which you can solve. 
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And when you solve you get the final value of NA and the value of NA is 3.04 x 10
17

. So, 

This is greater than the value of ND, which is 10
17

. So, what you have is essentially a p-

type semiconductor, where you have done compensation doping by adding excess 

amount of acceptors. 
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So, the main point here is that when you have whether an n-type or a p-type, the 

conductivity is essentially determined by the majority charge carriers. 

 


