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Module - 01 

Assignment - 02 

Intrinsic Semiconductors 

In today's assignment class, we will be looking fully at intrinsic semiconductors. 
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This is assignment 2 and we will be focusing on intrinsic semiconductors. So, before we 

start looking at the problems we just do a brief review. So, intrinsic semiconductors or 

pure semiconductors are essentially single crystals. We say that there are no defects in 

the semiconductor because these defects can again create electrons and holes of their 

own in the case of an intrinsic semiconductor. We say that the electron concentration in 

the conduction band that is n is equal to the whole concentration in the valence band that 

is p and it is equal to something which we denote as n i and n i we call the intrinsic carry 

of concentration. We also say that n i is the function of the band gap of the material E g 

and also a function of temperature. 

So, typically n i is written as N c n v exponential minus E g over 2 k t. So, the intrinsic 

carrier concentration depends exponentially on the band gap the temperature term enters 

in exponential factor, but N c and N v which are the effective density of states at the 

valence band h and the conduction band h are also a function of temperature. So, N c and 



N v are also function of temperature, typically they are proportional to temperature to the 

3 over 2, but the exponential term is the one that dominates. 

We also saw the general equation for conductivity sigma is nothing but n e mu e and P e 

mu h. In the case of an intrinsic semiconductor, this just becomes n i e mu e plus mu h. 

So, these are just a few points about intrinsic semiconductor we will be using them today 

during the course of the assignment, so let us first look at problem 1. 
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So, what fraction of current in intrinsic silicon is carried by holes? 
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So, we have silicon and it is intrinsic, which means n equal to p equal to n i and the 

question asked what fraction of current or what fraction of conductivity is defined by the 

holes. So, if you just say n is equal to p is equal to n i that means there is a 50 percent 

contribution. That is a very simplistic answer, the reason is the conductivity not only 

depends on n, it also depends upon mu e and mu h, which is the mobility of the electrons 

and holes. So, we can write the conductivity equation n e mu e plus P e mu h this 

represents the fraction carried by the electrons fraction due to electrons this is the 

fraction due to holes. So, we can include the numbers for mu e and mu h. 
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So, fraction carried by the holes we can write this in the form of a ratio it is nothing but P 

e mu h divided by the total that is ne mu e plus P e mu h. So, for an intrinsic conductor 

semiconductor n is equal to p is equal to n I, so these terms cancel, e will also cancel. So, 

this is nothing but mu h over mu e plus mu h. So, the fraction of current carried by holes 

is directly proportional to the whole mobility, we can plug in the numbers for silicon 

here. 
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So, for silicon, mu h is 450 centimeter square per volt per second, mu e is 1350. So, the 

mobility of the electrons is higher, so we can plug in these numbers and the fraction is 

0.25. So, even though we have equal concentration of electrons and holes they do not 

have the same mobility and this is because your electrons are moving in the conduction 

band and the holes are moving in the valence band. This ultimately determines what 

fraction dominates whether the electron conductivity dominates or the whole 

conductivity dominates. Later, when we see extrinsic semiconductors, we will find that n 

and p are not the same one is much higher than the other and then their 1 of the term 

dominates because of the difference in concentration, so let us now move to question 2. 
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So, we have a pure semiconductor or an intrinsic semiconductor the band gap is 1.25 eV. 

So, the effective masses of the electron and holes are also given the effect to mass of the 

electron me star is 0.1 times m e, where m e is the mass of the electron and m h star is 

0.5 m e. This is the effective mass for the hole, once again we have seen the concept of 

effective mass before effective mass does not mean a change in the actual mass of the 

electron or the hole. It just represents the cumulative of all the forces of the atoms in the 

lattice that basically acts on the electrons and holes. 

Once again, this number are different because you have electrons that are moving in the 

conduction band and holes that are moving in the valence pat. So, the band gap is given 

the effective mass values are given the carriers scattering time is temperature dependent 

and that is given of the form. So, tau which is your scattering time is a function of 

temperature and this is 1 minus 10 to the minus t. So, 1 times 10 to the minus 10 divided 

by temperature and the units are sec’s. So, the effect to masses are given the band gap is 

given and the temperature dependence of the carriers scattering time is also given this we 

will use to calculate the nobilities. 

So, we want to find the following at 2 temperature 1 is 77 Kelvin and the other is 300 

Kelvin. So, 300 Kelvin is room temperature 77 Kelvin is typically your liquid nitrogen 

boiling point. So, that is the low temperature, the first one we want to find is the 

concentration of electrons or holes because this is a pure semiconductor. 



What we want to find is the value of the intrinsic carrier concentration. So, we can go 

back to the equation n i is nothing but square root of N c and N v exponential minus E g 

over to k t. So, the problem is we do not values of N c and N v these are the effective of 

states or the band edges, but these we can calculate once we know the effective mass. So, 

N c which is the density of states at the conduction band edge it is nothing but 2 pi m e 

star k t over h square whole power 3 over 2 N v. We can do the same for the valence 

band edge 2 pi m h star over k t by h square whole power 3 over 2. So, we have the 

values for N c and N v again we see both are temperature dependent, they are 

proportional to t to the power 3 half. 

So, once we calculate N c and N v for both the temperature s, we can plug in here and 

calculate the value for n i the band gap is also known. So, typically you have to keep all 

of this in SI units. So, you have to convert E g from electron holes to joules in that we 

can do by just multiplying by 1.6 times 10 to the power minus 19 kb is also in joules. So, 

it is your Boltzmann constant that has its standard value. So, once we plug in the 

numbers, I am just going to write the final answers, but you can just go through and 

check. So, N c at 77 Kelvin is 1.03 times 10 to the 23 per meter cube. 

So, if you remember the definition of the effective density of states is the total number of 

states per unit value that is available for the electron to occupy or the hole to occupy. 

Similarly, N v is 1.151 times 10 to the 24 per meter; we can do the same calculations for 

300 Kelvin and again just write down the answers. So, N c is higher 7.92 times 10 to the 

23 N v is 8.85 times 10 to the 24 per meter cube. So, compared to 300 Kelvin N c and N 

v is higher this is because we have more density of states available at higher temperature, 

simply because their directly proportional t to the 3 over 2. 

So, we can substitute this values of N c and N v in this expression and calculate the value 

for n i. So, let me just write that down n i at 77 Kelvin is 4.63 times 10 to the minus 18 

meter cube. So, that is a really small number n i at 300 Kelvin is 8.56 times 10 to the 13 

per meter cube. So, I can also write this in centimeter cube or 8.56 times 10 to the power 

7 centimeter cube. So, your N c and N v values if you look or of by 1 order of magnitude 

simply because you have rise in temperature, but because your n i depends exponentially 

on band gap. There is a huge variation between 77 Kelvin, which is your liquid nitrogen 

temperature and 300 Kelvin which is room temperature. 



So, here you have a value that is 10 to the minus 18 and a room temperature you have 

value for n i that is close to 10 to the power 30 so that overall there is a 31 orders of 

magnitude change as you go from liquid nitrogen to room temperature. This is why we 

say that out of these 2 terms N c and N v and the exponential term, the exponential term 

is the one that dominates in determining the value for n i. So, this is part a, where we 

want to calculate the concentration of electrons and holes part b, we want to calculate the 

firm e energy or the location of the firm e level. 
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So, part b we want Val the location of e f i this is again a standard expression e f i this E 

g over 2 minus 3 4th k t lone of me star over m h star. So, if m e and m h were equal then 

EF i will be a exactly the center of the band, if you remember EF i is nothing but a 

representation of the chemical potential or the amount of work that needs to be done in 

order to remove an electron from a semiconductor. So, even though your electron and 

whole concentration are the same, so n is equal to p because you have different effect to 

masses your EF i is slightly shifted from the center of the gap we can once again plug in 

the number. So, 77 Kelvin 300 Kelvin m e star and m h star values are given temperature 

is also known. 

So, EF i here if you do the substitution 0.633 electron works at room temperature EF i is 

0.656 E g over to if you look at it is just 2.36 over 3, so 0.625 electron volts. So, the 

values are very close to the center of the band gap by they are slightly shifted. 



The shift becomes higher, the higher the temperature. So, this is 0.633 and this is 0.656. 

So, slightly deviated away from the center of the band gap this is part b in part c we want 

to calculate the electron and whole nobilities. So, we want to calculate the values of mu e 

and mu h. So, mu e and mu h are related to the effective mass of the electrons and holes 

and they are also related to the scattering time. So, mu e is nothing but e tau e over me 

star and mu h this e tau h over m h star some star and m h star are given tau e and tau h 

or your scattering times and you said that tau is nothing but 1 times 10 to the minus 10 

over temperature and the unit is seconds. 

So, once again we can calculate the values of tau, in this particular question tau e and tau 

h are both the same because we do not distinguish between electrons and holes. We only 

say it depends upon temperature. Once we calculate tau, we can go ahead and calculate 

mu e and mu h and get it for the 2 different temperatures. So, let us again write down this 

side is 77 Kelvin this side is 300 Kelvin. So, tau if you calculate is 1.3 time 10 to the 

minus 12 seconds, you can then calculate mu e which is 2.283 unit i e meter square per 

volts per second sometimes centimeter square per holes per second were also there. 

It depends upon which you want to use mu h is 0.456 meter square holes per second and 

mu h the mobility of the holes is lower because the hole effect to mass is higher that of 

the electron. We can do the same for 300 Kelvin in this case tau is 3 point 3 times 10 to 

the minus 13 seconds. So, higher the temperature smaller is the scattering time, so at 

lower temperature this is minus 12 seconds this is minus 13 seconds. So, one way to 

think about this is higher the temperature faster the electrons and holes are moving 

because they have higher thermal validities. So, they can scatter of the atom quicker mu 

e 0.586 meter square per volt per second mu h 0.117 meter square per volt per second. 

So, the last part of the question we want to calculate the electrical conductivity sigma is 

nothing but n i e mu e plus mu h. So, n i we got in the first part of this question mu e and 

mu h just calculated, so we can just plug in the numbers. So, sigma at 77 Kelvin is very 

small because if you remember n i is very small. So, 10 to the minus 36 inverse meter 

inverse you can also have o m inverse and centimeter inverse depending upon what your 

values the units for n i and mu e and mu hr. 
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So, the same thing we can do at room temperature and sigma is 9.6 minus 10 to the 

minus x. So, by looking at an intrinsic semiconductor at two different temperatures, one 

thing we find is that the carrier concentration increases exponentially with temperature. 

Similarly, the conductivity will also increase because the carrier concentration increases 

this again is determined by the value of the band gap. So, higher the value of E g steeper 

is this dependence. So, instead of 1.25, we had done the same problem will say two 

electron volts, your answer will also been different, but the difference between 77 and 

300 Kelvin will also be more pronounced. 

So, that is something you can always work out you can take the same values, but change 

the value of E g 2 electron holes and do this question and you can see the difference 

between 77 and 300 Kelvin, so let us now move to question 3. 
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So, question 3, we have Gallium arsenide which is a direct band gap semiconductor with 

E g of 1.42 electron holes at 300 Kelvin. So, Gallium arsenide it has a higher band gap 

than silicon. So, also a direct band gap material, but that is not relevant for this question 

it is a room temperature. So, temperature 300 Kelvin take N c equal to N v equal to 5 

times 10 to the 18 per centimeter q and also independent of temperature. So, the N c and 

N v values are given and just for this question we assuming that both are same and that 

they are also independent of temperature. Strictly speaking, this is not true, but as you 

see for this particular question, this is very valid assumption. 



So, first we want to calculate the intrinsic carrier concentration at room temperature. So, 

that is pretty straight forward if you see in the formula before. So, N c n v exponential 

minus E g over 2 k t, so we can plug in the numbers the value of E g is given. So, n i is 

6.05 times 10 to the power 6 per centimeter cube. So, this is the intrinsic carrier 

concentration at room temperature n i is a pretty small number for comparison silicon 

has a value of n i of 10 to the 10. So, for order of magnitude higher, but this is because 

Gallium arsenide has a higher band gap. 

So, the next part of the question says explain numerically how the carrier concentration 

can be doubled without adding dopes. So, we want to keep this semiconductor your pure 

semiconductor, but at the same time we want to increase the value of n i. So, the new 

value of n i, we want is double of the n i value at room temperature if you not allow to 

add dopes. If you look at this equation the only way to increase n i is to increase 

temperature because N c and N v are both temperature dependent terms n i also depends 

on temperature through this exponential term minus E g over 2 k t. So, increasing 

temperature will once again increase n I, so the only way to increase n i without adding 

dopes is to increase temperature. 

So, we want to know what the new temperature is when a value of n i is 2 times the n i at 

room temperature. So, we will once again use this expression N c and N v is constant. 

So, it is not a function of temperature if it were a function of temperature that will also 

have to be taken in to accounts, but N c and N v are constant we know the new value of n 

i. So, it is 2 n i at room temperature square root of N c N v exponential minus E g over 2 

k let me call this temperature t prime. So, the t prime is the only thing we want to know 

is the only unknown this is known these are all known we can put this and re calculate 

and this gives you the value of t prime to be 300 and 7.7 Kelvin. So, you increase the 

temperature by 7 degrees. 

So, delta t is 7 point 7 Kelvin you can double the concentration of n I, so temperature 

equal to 300 is approximately 27 degrees, so 300 Kelvin is 27 degree Celsius. So, 307 is 

34.7 degree Celsius. So, you find that even for a small increase in the value of n i. So, we 

are only doubling the value of n i you need to increase your temperature for 7 degrees if 

you want really the high conductivities that we see in the extrinsic semiconductors. You 

can actually calculate that the temperature change must be much higher this is one of the 

reason where intrinsic semiconductors are almost never used. 



In the case of devices usually dope semiconductors are used because it is much easier to 

control the dopant concentration and then control the carrier concentration and also the 

conductivity, so let us now go to problem 4, so problem 4. 
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We want to calculate the intrinsic carrier concentration germanium. 
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So, we have germanium with the band gap E g of 0.6 electron volts, this is lower than 

that of silicon. In fact, germanium was the first semiconductor that was used m e star is 

0.56 m e and m h star is 0.40 m e, so we want to calculate n i. 



So, the equation is the same n i is N c N v exponential minus E g over 2 k t, so N c and N 

v are again related to m e star and n h star. So, N c is 2 pi m e star k t over h square 

whole power 3 over 2. We can write a similar equation for m h star we saw that earlier 

during question 2. So, once again we can calculate N c and N v plugged back in and get 

the value of n i. So, will do the numbers you can write down the final answers N c is 1.05 

times 10 to the 25 per meter cube N v which is the same equation except m e star is 

replaced by m h star n e is 6.33 times 10 to the 24 per meter cube. 

So, N c and N v are known we can calculate n i n i if you do is 2.36 times 10 to the 19 

per meter cube, I am just writing down the final answers the math can always be worked 

out or 2.36 times 10 to the 13 per centimeter cube. So, we saw the gallium arsenide has a 

value of n i that is 4 times or 4 orders lower than that of silicon. Germanium on the other 

hand has a value of n i that is nearly 3 orders of magnitude higher then silicon. Once 

again, the differences are all related to the band gap values, we can then calculate sigma, 

sigma is n i e m e and m h the value of mu e and mu h are given m e is 3900 ad m h is 

1900 centimeter square per volt per second. 

So, that sigma is nothing but 0.022 inverse and centimeter inverse, if you also want to 

calculate the resistivity row is 1 over sigma, which is equal to 45.66 per centimeter. The 

question also asks to calculate the position of the Fermi level at room temperature. 
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So, that is again an application of the formula e f i is E g over 2 minus three-fourths k t 



lawn of m e star over m h star. So, this again very close, but it is not exactly at the center 

of the band gap, so let us now look at problem 5. 
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There is a particular semiconductor. 
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It says that the effective density of states is a constant N c naught times temperature to 

the power 3 over 2 and same way N v is N v not times temperature to the power 3 over 2. 

So, the experimental values of n i at different temperature s are given, so we have 

temperature values of n i in centimeter cube. So, 200, 300, 400 and 500 the values of n i 

10 to the 7, so we can see that with increasing in temperature the value of n i is also 

increases. So, the question ask us to determine this product n v c not times N v not and 

also the band gap. So, both E g not known and these 2 numbers are not known you can 

go back to the original equation n i is N c N v exponential minus E g over 2 k t N c and 

N v we can substitute these x terms. 

So, that this simplifies to t to the 3 over 2 square root of N c naught N v naught, which is 

at temperature independent term times exponential minus E g over 2 k t. So, we can 

chose any 2 temperatures, so we have 4, we can take any 2 temperature s and take the 

ration of n i at these 2 temperature s. 
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So, n I some temperature t 1 n i at another temperature t 2 it is nothing but taking this 

ratio which is here this is a temperature independent term. So, this becomes t 1 over t 2 

whole to the power 3 over 2 exponential minus E g over 2 k 1 over t 1 minus 1 over t 2. 

So, t 1 and t 2 values are known n i values are known for example, your t 1 could be 200 

Kelvin t 2 could be 300 Kelvin in which case the n i values are tabulated the only 

unknown here is e g. So, I did this calculation taking 200 and 300 you can take it with 

the any of the other temperature s and you also done and checked if you substitute the 

values E g works out to be 1.25 electron volts. So, this is the value of E g, which is the 

band gap of the material. 

Once you know E g, you can substitute E g for any of the temperature s and evaluate N c 

not and N v not this is a temperature independent term if you do that N c not times N v 

not is nothing but 1.188 times 10 to the power 29. The units here are crucial N c and N v 

the square root of that should have the units of centimeter per centimeter cube or per 

meter cube. In this particular question, this also depends on t to the 3 over 2. 

So, the units of this product is centimeter to the power minus 6 Kelvin to the power 

minus 3 that way when we substitute for square root units work out in the right way. So, 

today we have looked at various problems related to intrinsic semiconductors, the 

important thing to remember is that the intrinsic carrier concentration is a function of 

temperature and depend upon the band gap of the material. 


