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Lecture - 5 

Intrinsic Semiconductor 

 

Let us start with the brief review of the last class; in last class we looked at 2 important 

concepts.  

(Refer Slide Time: 00:25) 

 

The first one is called the density of states we denoted this as g of E density of states 

refers to the number of available states for electrons to occupied. We looked at a simple 

model were we had a solid as a uniform 3 dimensional box with no potential. In such a 

case, we found that the density of states is directly proportional to a square root of the 

energy. So, thus the energy goes up the total number of available states for the electrons 

to occupy also go up.  

We also looked at another concept we called the Fermi function. We denoted this by F of 

E the Fermi function tells you, the probability of occupation of an energy state by an 

electron. F of E found is 1 over 1 plus exponential E minus EF over kT. We saw that a 

temperature equal to 0 Kelvin, if E is less then E F F of E is 1, which means all the levels 

below Fermi energy are occupied at E greater then E F F of e is 0, which mean above the 

Fermi energy all the levels are unoccupied.  



We saw that all temperatures at energy E equal to E F F of E is half, when the energy is 

much higher than kT we can approximate the Fermi function by Boltzmann function. So, 

this becomes exponential minus E minus E F over kT. Which is the Boltzmann function 

and this is true, so this what we looked at last class. We will use these concepts of density 

of states and Fermi function in order to calculate the electron whole concentration in 

semiconductors and first we will start with intrinsic semiconductors.  
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We will start with intrinsic semiconductors another name for this is Pure semiconductors. 

We will use the concepts of the density states and Fermi function to calculate the carrier 

concentration that is the electron whole concentration we will also use we will also, 

define concepts of electron mobility and conductivity. Once we are done this for the 

intrinsic semiconductors, we will move on to extrinsic semiconductors.  

So, what are intrinsic semiconductors? So, these are materials I will just say 

semiconductors in the bracket. That are single crystal and have no impurities or defects. 

We will say later, why it is important that there should be no impurities or defects. Most 

of what we do, we will reference using silicon as the material because; silicon is the 

dominant material in today’s microelectronic industry.  

But all the concepts that we develop can be equally applied to other semiconductors and 

later, when we look at examples we will also looks at other materials to compare and 

contrast with silicon. But for the most part we will deal with silicon. As oppose to 



intrinsic I mentioned earlier that you also have extrinsic semiconductors these are doped 

semiconductors.  

If you look in terms of applications extrinsic semiconductors are almost always used. 

Intrinsic semiconductors do find some applications, but not whole a lot; mostly intrinsic 

semiconductors are used as optical senses in the cases photoluminescence experiment or 

as senses for x-rays in electron microscopes. So, these are senses which are called 

Energy Dispersive x-ray analysis.  

Usually in those cases, either intrinsic silicon or germanium is used cool to around liquid 

nitrogen temperatures, but for applications extrinsic semiconductors are preferred. We 

will start with intrinsic first and once we develop these concepts we will go on to use 

them to understand extrinsic semiconductors. So, let us start with intrinsic 

semiconductors.  
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As we saw earlier the electronic configuration of the outer shell of silicon is 3s2 3p2 

there are total of 4 electrons the s and p orbitals hybridized to give you 4 sp3 hybrid 

orbitals. And we later saw, that these orbitals when they form a solid give you a valance 

band which is completely and a conduction which is completely empty.  

In show that band diagram here; you have a valence band that is completely full, you 

have conductional band that is empty. You why axis here refers to energy usually the 



energy is referenced with respect to the bottom of the valence band. So, the bottom of the 

valence band is given 0 Ev denotes the top of the valence band and Ec denotes the 

bottom of the conduction band.  

The difference between the top of the valence band and the bottom of the conduction 

band is, the band gap we call Eg. In the case at silicon at 0 Kelvin, Eg has the value of 

around 1.17 electrons Volts at room temperature Eg is slightly lower around 1.10 

electron Volts. The top of the conduction band usually denoted as Ec plus kai where, kai 

is the electron affinity for silicon kai has value for 4.05 electron Volts.  

So, at 0 Kelvin you have a valence band that is completely full and a conduction band 

that is completely empty. At any temperature above 0 Kelvin we saw earlier, you have 

thermal excitation of electrons so that, the electrons from the valance band can move to 

the conduction band and leaving behind holes. So, any temperature greater than 0 Kelvin 

you will have electrons in conduction band and holes which is the absence of electrons in 

the valence band.  

We also saw, that apart from thermal excitation; we can also use light in order to excite 

carriers across the band gap. If Eg is the band gap of material the wave length of light 

that is required in order to excite carriers is nothing but h c over lambda we can do this 

calculation for silicon were, we find that lambda is approximately 1000 nanometers and 

this lies in the IR region.  

As long as we shine light with a wave length that is less than 1000 nanometers which 

means, the energy will be higher than the band gap; you can always excite carriers from 

the valance band to the conduction band. So, this explains why silicon is opaque because 

visible light has a wave length less than 1000 nanometers.  

The visible range is from 400 to 800 nanometers which means, silicon will be able to 

absorb the visible light and produce electrons in holes. Similarly, SiO2 which is glass has 

a band gap of approximately 10 electrons holes.  
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So, if you have SiO2 has a band gap approximately 10 electron holes which means, the 

wave length that is required to excite electrons from the valance band to the conduction 

band this approximately 106 nanometers. So, 10 times less than that of silicon this lies in 

the uv region again explains why glass is transparent.  
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So, coming back to silicon here is the picture we have at room temperature. we have 

electrons in the conduction band we have holes in valance band and these electrons and 

holes are set to be delocalized that is they can move through the solid. The process of 



formation of the electrons and holes is a dynamic process. That is electrons and holes are 

constantly being formed at the same time electron also, fall back to the valance band and 

recombine with the holes so that, they are also getting illuminated.  

So, the formation and recombination takes place so that, we can say this is dynamic 

process. So, we have an equilibrium concentration of electrons and holes and this 

concentration depends upon the temperature. And say we have an equilibrium 

concentration of electrons and holes and this temperature dependent. When we apply an 

electric field this electrons and holes can essentially moved.  
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So, we will just show the schematically a solid of silicon you have electrons, you have 

holes you apply in electric field E is the electric field electrons will go in the direction 

opposite to the field, holes will go in the direction of the field and finally, you will have 

current. The current is because, the electron moves in the conduction and the holes move 

in the valance band. What are the factors on which the current depends on?  
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Let us, look that next current or of you want to think about it conductivity in case of an 

intrinsic semiconductor depends upon 2 factors: the first 1 is the concentration of 

electrons in holes that are available. So, more the electrons in holes there are higher is 

the conductivity. Concentration of electrons and holes we can denote the conductivity by 

the symbol sigma and I will just say as concentration increases your sigma will also 

increase.  

The next factor on which the conductivity depends on is, how far these electrons in holes 

can travel before that get scattered by lattice. So, remember you have electrons that are 

moving in the conduction band and you holes that are moving in the valance band. But 

these are moving through a solid of silicon atoms we are looking at intrinsic silicon. And 

all these atoms are vibrating which means, this electron and holes can interact with atoms 

and get scattered.  

In the case of a semi conductor, these electrons and holes are set to drift to the material. 

To understand this we define the quantity that we call the mobility. Mobility is denoted 

by the single mu and the expression for mu, we are looking at electrons we can say mu e 

is nothing but tau e over me star you can write a similar expression for holes mu h. So, 

mu e depends upon a factor tau e and the effective mass of the electron mu h on a factor 

tau h and the effective mass of the holes.  



So, mu e and mu h are the mobilities the factors tau e and tau hand refers to the time 

between 2 scattering events. So, if tau e and tau h are large which means time between 2 

scattering events is large. So, the electrons can travel a large distance before scattering. 

In such a case, if these 2 are large your mobilities are also large and hence the 

conductivity is also higher.  

So, we can say if mu e and mu h increases and they would increase if the scattering is 

less the conductivity increases. So, we saw that the conductivity depends on 2 terms: one 

is the concentration, the other is the mobility. We can put this together to write an 

equation for the conductivity.  
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So, if the sigma is the conductivity sigma is nothing but ne mu e plus pe mu h now this is 

a very important equation which relates the conductivity to the electron concentration 

and the mobility. And this equation is true whether, you have an intrinsic semiconductors 

or an extrinsic semiconductor. The n and p refers to the concentration of electrons in 

holes, which is the first factor that we saw earlier e is the electric charge which is 1.6 

times 1 to the minus 19 Coulombs.  

So, that is the constant and mu e and mu h are the mobilities of electrons and holes. So, if 

you look at this expression higher the concentration so higher n and p mobility is higher. 

Similarly, higher the conductivity is higher similarly higher mu e or mu h the 

conductivity is higher. The typical units for mobility are meter square holds per second 



units for mobility can either, use meter square per volt per second you will also find that 

some books give values in centimeter square volts per second.  

So, let us take look at the mobility values for silicon we have silicon mu e which is the 

mobility of the electron in the conduction band is around 1350 centimeter square volt per 

second if you want to convert this to si unit you just divide by 10 to the 4. So, this is 

1.350 mu h which refers to the mobility of the holes in the valance band slightly smaller. 

So, around 450 centimeter square volts per second or can divide this by 10 to the 4.  

The top 1 should be 1.350 just rewrite that. So, these are the unit or these are the values 

of conductivity in the case of silicon for both electrons and holes. We define mobility the 

ability of the electron to move through the material before being scattered. We also, saw 

that the mobility depends upon the scattering time we will use this to do some 

calculations for the scattering time. So, consider the case of silicon and we will only talk 

about the electrons can use the similar calculation for the holes.  
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Consider the case of silicon when mu e is 1350 we also, said earlier mu is related to this 

scattering time the expression was e tau e over m e star. Just rearranging the terms, gives 

you tau e, so all I did take this term here and then bring e down. In the case silicon me 

star is around 0.26 me, where me is the mass of electron and me has a value.  



So, we can substitute the number here to get the value tau e. So, 1350 and multiply by 10 

to the minus 4 convert to SI units if you do the math’s tau e works out to be 2 10 times to 

the minus 13 seconds or 0.2 Pico seconds and 1 Pico seconds is 10 to the minus 12 

seconds. So, this time 0.2 Pico seconds represents the time between 2 scattering events 

for an electron and silicon that is moving through the conduction band.  

So, tau e refers to the time between 2 scattering events and since we are talking about the 

electron is for the electrons in the conduction band. We will also, like to calculate the 

distance the electron travel between these 2 scattering events or the distance the electron 

travels in the time 0.2 Pico seconds.  
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If you look at on electron with a mass given by me and velocity that is given by Vth then 

the kinetic energy is nothing but 1 half and v square, since the kinetic energy of electron. 

In case of most solid you can say that the kinetic energy is approximately equal to the 

thermal energy. So, this is approximately equal to 3 by 2 kT, where k is the Boltzmann 

constitute k has the value 1.38 time tens to the minus 23 Joules per Kevin.  

Equating this expression we can find a value for V thermal or the velocity of the electron 

which is nothing but square root of 3 kT over me can again, plug in all the numbers we 

are doing this calculation at room temperature. So, temperature is 300 Kelvin if you do 

this v thermal works out to be 1.16 times 10 to 5 meters per second.  



So, we calculated thermal to be 1 times 10 to the 5 meters per second earlier we saw the 

time between the 2 scattering events was 2 times 10 to minus 13 seconds or 0.2 Pico 

seconds. So, the distance travel by the electron between 2 scattering events is nothing but 

V thermal times tau which if you do the math is around 2.33 times 10 to the minus 8 

meters or approximately 23 nanometers.  

To put this into perspective you can say that, the lattice constant for silicon is 0.54 

nanometers. So, the distance travels in terms of the lattice constant is 23 by 0.54, which 

if you see approximately 43 unit cells. So, the time between 2 scattering events is really 

small. So, the time is of the order of Pico seconds, but because your electrons are such a 

high velocity.  

The velocity is around 10 to the 5 meter per second we find that the electron actually 

travel a substantial distance. So, it travels nearly 40 unit cells before is under goes 

another collusion and the scattering. Mobility is usually a function of temperature it is 

also, can be a taut of as a material property as long as you do not add any impurities.  

Later when we look at extrinsic semi conductors, you will find that increasing the 

concentration of the dopens decreases the mobility. You can compare the mobility of 

silicon with some other semiconductors to see the values.  
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I will leave the expression of sigma up here we saw that the I will leave the expression of 

sigma up here we saw that the mobility of electron in silicon was around 1350 centimeter 

square per volt per second this is for silicon. If you had germanium, germanium has 

slightly higher mobility mu e is 3900 that is the value for germanium gallium arsenide is 

even higher. So, if you want to improve the conductivity of material and you are ask to 

choose materials in order to have higher conductivity just based upon the mobility value 

the choice would be gallium arsenide  

Because, gallium arsenide has a highest value 8500 which is nearly 6 times or 7 times 

higher than that of silicon. But if you look at the expression for sigma it not only depends 

upon mobility it also, depends upon on the concentration of electron and holes. So, the 

next we do is to calculate the electron and holes calculation has a function of 

temperature. So, in last class we looked at the concept of the density of states.  
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And the Fermi energy putting those 2 concepts together, you can say that the 

concentration of electrons in the conduction band is nothing but the integral over the 

entire width of the band of the density of states in the conduction band I call that g CB of 

times F of E dE.  

To put this into words, if you want to find the number of electrons in the conduction band 

at any given temperature it is going to depend on the number of states that are available 



in the conduction band which is g CB of E the density of states and provability that those 

states are occupied by the electron, which is F of E.  

If you look at a conduction band the width of the conduction band we saw earlier goes 

from Ec to Ed plus kai where, kai is the electron affinity goes from Ec Ec plus kai g CB 

which is the density of states times the Fermi energy dE. Now, we want to calculate the 

density of states and silicon is real crystal, but we can make use of the assumption of a u 

solid with a uniform potential, which we did earlier for a solid with a unit of potential.  

The density of states E is given by 8 pi square of 2 by h cube me star, which is the 

effective mass of the electron in conduction band times E to the half. So, this expression 

we saw earlier for a solid with a uniform potential a 3d solid and we will use that 

expression to find the density of states of electrons in the conduction band of silicon. So, 

we are looking at only the conduction band E here must be written with respect to the 

bottom of the conduction band.  

So, we will modify this expression g CB and write it as 8 pi square root of 2 by h cube 

me star 3 over 2 and instead of E we will write it as E minus Ec the whole half. So, you 

are writing the energy with respect to the bottom of conduction band F of E is 1 over 1 

plus exponential E minus EF over k T. Usually in the case of silicon and you will 

actually showed it explicitly later on E minus EF will be of the order of the electron 

holes.  

Or a point greater then 0.5 electron holes k t is usually of the order of milli electron 

holes. So, we can approximate the Fermi function as a Boltzmann function and write this 

exponential minus E minus EF over kT, so this expression approximate to this 1. In the 

case of the silicon semiconductor our limits where, the width of the band that goes from 

Ec to Ec plus kai for ease of integration we can are place the Ec plus kai term with 

infinity this also true.  

Because, we find that most of the electrons are located very close to the bottom of the 

conduction band. So, we can a take the top of the conduction band to be infinity and we 

would not lose much in the model. So, we replace Ec plus kai with infinity let me, and 

then rewrite this expression again.  
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If you rewrite this n which is the number of electron in the conduction band goes from 

the base of the conduction band Ec up to infinity the density of state times to Fermi 

function dE, where the density of state is given by this expression me star whole power 3 

over 2 E minus Ec whole power half and F of E we will use Boltzmann approximation 

and write it an exponential e minus EF over kT.  

We can substitute this 2 in this expression and do the integration I will not show the 

integration explicitly, but write down the final result. When we do this we get n is equal 

to Nc, which is a constant at a given temperature times exponential minus Ec minus EF 

over kT Nc is nothing but 2 times 2 pi me star kT over h square whole power over 2. 

This part Nc is called the affective density of states at the conduction band edge.  

So, n depends upon the effective density of states at the conduction band edge times and 

exponential function, what do we derivation we did for electrons we can equally do for 

the holes in the valence band I would not do the derivation for holes, but I will just write 

down the expression. For holes P which is the concentration of holes in valance band is 

Nv which is a constant times exponential minus EF minus Ev over kT Nv is 2 2 pi mh 

star instead of me its mh star kT over h square whole power 3 over 2.  

This is the affective density of the state at the valance band edge. So, we have 2 

expressions: 1 for electrons and 1 for holes. These expressions 1 for electrons and 1 for 



holes give you the concentration of electrons in the conduction band and holes in the 

valance band for a given semiconductor as function of temperature.  
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Let me, just rewrite those 2 expression n this Nc exponential in P is Nv exponential 

minus EF minus Ev over kT. We can mark the position of Ec and Ev in the band 

diagram. So, if you draw this you have a valance band the base of the valance band is set 

as 0, the top of valance band is Ev then you have conduction band the base of the 

conduction band is Ec the top of the conduction band is Ec plus kai.  

The difference between the valance band and the conduction band is the band gap. So, 

here your expression is long as we know all these values Nc Nv Ec Ev we can calculate 

the concentration of electrons in holes. If you look at this expressions the Fermi energy 

term EF is in there, but I am not marked where the Fermi energies. So, if you do not 

know where EF is you only able to calculate n and p.  

So, let us go ahead and eliminate EF by multiplying n and p together. If you do that n p 

will be Nc Nv exponential minus Ec minus Ev over kT all have done is multiply this 2 

together. Ec minus Ev if you see from this band diagram this whole thing is Ec this is Ev. 

So, Ec minus Ev is nothing but the band gap, so this I can replace Nc Nv exponential 

minus Eg over kT.  



In the case of an intrinsic semiconductor your electrons are created because, they are 

excited from the valance band and to the conduction band. And whenever, an electron is 

created a hole is also created. So, in the case of intrinsic semiconductors n which is the 

concentration of the electrons is equal to P, which is a concentration of holes. And this is 

usually denoted as ni, ni is called the intrinsic carrier concentration. So, for an intrinsic 

semiconductor n equal to P equal to ni.  
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So, if you make use of the fact n is equal to p then we can rewrite the expression np is 

nothing but ni square which is the square of intrinsic carrier concentration that is equal to 

Nc Nv exponential minus Eg over kT. And then taking square root you get ni a square 

root of Nc Nv exponential minus Eg over 2 kT.  

This is expression for the carrier concentration, so the concentration of electrons in holes 

in an intrinsic semiconductor as a function of temperature. We saw that the conductivity 

equation ne mu e plus pe mu h, in the case of an intrinsic semiconductor n is equal to p is 

equal to ni. So, we can take this term outside, so its ni e mu e over mu h.  

So, the conductivity depends on the some of mobilities of both the electron and the hole 

in the case of an intrinsic semiconductor. So, this is where we will stop for today in the 

next class we will start by calculating these values for the intrinsic carrier concentration 

and the conductivity for silicon. Then, we look at how changing the materials will these 

values then we will proceed from there.  


