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In last class, we looked at an over view of the patterning process. We saw that in the case 

of IC fabrication we can divide the processes into four main kinds: we had layering, 

lithography or patterning, doping and heat treatment. If you think of an IC fabrication as 

an assembly line process, we start with a blank silicon wafer silicon is typically the 

material that is used Gallium Arsenide is also used.  

 

So, we start with the blank wafer which goes through these various processes and you 

get finished IC circuit out. We also looked at an example of fabrication of a MOSFET 

metal oxide, semiconductor, field effect transistor, where we started with the blank wafer 

which went through this different steps could be layering, could be patterning, doping, 

heat treatment, is included in all of this to give you the finished MOSFET.  

 

So, starting from today for the next few lectures we look at each of these processes in 

detail. Today we are going to look at layering and in layering we are going to look 

particularly at grown film; that is films that consume the underline silicon.  
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So, today we are going to focus on the oxidation of the underline silicon film. So, the 

ability of silicon to form silicon dioxide or SiO2 is very important. If you remember 

when we talked about the introduction to integrated circuits, the first circuits were made 

of germanium, but later when ICs came into being silicon was used as the material of 

choice. 1 of the reasons of course, is that silicon is abandoned.  
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So, it is easy to manufacture, but more importantly silicon can also form SiO2 and SiO2 

is a very good insulator. SiO2 is used as the original dielectric material for the 



MOSFETs. So, it is access a dielectric between the gate and the semiconductor of course, 

later which scaling Silicon dioxide was originally replaced with oxynitrides. And finally, 

we have high cay dielectrics, when we look at Silicon naturally has a native oxide on the 

surface.  
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The Native oxide has a thickness typically around 3 nanometers, Silicon dioxide 

performs a couple of functions: 1 it helps in passivating the surface so, this passivation 

can be both physical and chemical. So, this is very important because surface passivation 

will also affect the electronic properties. So, whenever we think of a surface it could be 

silicon 1 1 1 or silicon 1 0 0 there are always some dangling bonds.  

 

Dangling bonds are usually defect states, that lie in the middle of the band gap and they 

can affect the electrical properties. So, Silicon dioxide helps in passivating these 

dangling bonds so, that that improves the properties. So, this passivation can be physical 

and chemical. Silicon dioxide is also important because, it is used for patterning the 

substitute.  
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So, it is an example of hard mask so, Silicon dioxide is a hard mask because it can 

basically survive at high temperatures. So, in the example of MOSFET that we saw in 

last class the first layer we group was the field oxide which is nothing, but silicon 

dioxide. So, if you want to do doping at high temperatures and you want to do doping 

only in specific regions then, usually some sort of an oxide layer is used for pattern.  

 

But the native oxide layer we saws 3 nanometers thick is usually too thin for doing any 

of the patterning processes. So, a thicker oxide layer has to be grown on silicon and this 

is essentially the oxidation process. We also saw briefly that there are 2 kinds of oxides 

that can be formed.  



 

(Refer Slide Time: 05:36) 

 

The first 1 is dry ox in this particular says silicon reacts with oxygen gas usually this is at 

high temperature to form SiO2. The other kind of oxide which called your wet ox in 

which case silicon reacts with steam again at high temperature to give you Silicon 

dioxide plus Hydrogen so, both of these processes required high temperature and they 

both consume the silicon.  

 

Now because, silicon dioxide has a different density compare to that of silicon there is 

always some volume expansion, when we have an oxide layer forming on the surface. To 

look at, that considers a silicon substrate with an oxide layer on top.  
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So, this oxide layer is a grown oxide so, that it consume some of the silicon. So, this is 

SiO2 so, the dotted line represents the original interface of the silicon. So, this much 

amount of silicon has been consumed in order to grow the oxide. So, this is the original 

silicon interface d is the amount of silicon that is consumed typically a thickness and d 

prime is the thickness of the oxide layer.  

 

Then, d is the silicon that is consumed informing this oxide layer. So, one can find a 

relation between d prime and d while simply looking at the number of moles of silicon 

consumed in the number of moles of SiO2 formed. To do this we just need some 

physical properties.  
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So, first is density in grams per centimeter cube, silicon in SiO2 silicones density is 2 33, 

SiO2 is 2.65. We also need the molecular weight for silicon this will be the atomic 

weight so, silicones atomic weight 60.08. So, if d is the thickness of the silicon 

consumed and A is the cross sectional area; A times d is the volume of the material. The 

mass is nothing, but density of silicon times the volume or the number of moles.  

 

So, Z of Si is nothing, but the molecular weight let me just make a notation here so, z. 

So, Z of Si is the atomic weight of silicon and this is the mass of silicon that is 

consumed. Similarly, we can write another expression for the number of moles of SiO2 

formed, the thickness of the SiO2 layer is d prime. So, d prime is the thickness of SiO2 

and d is the thickness of the silicon that is consumed.  

 

These numbers of moles are essentially equal because, 1 mole of silicon gives the 1 mole 

of SiO2. So, if you equate these two area is common we can rearrange the other terms 

and substitute the values from, which we get d prime by d is nothing, but 1.88. So, if you 

take an example let us say we want to grow 100 nanometers SiO2 that is the target 

thickness. So, this will be d prime corresponding value of d is just d prime divided by 

1.88.  

 

So, it 53.2 nanometers of silicon is consumed. So, there is always some volume 

expansion when you consume silicon and you grow a layer of Silicon dioxide on the 



surface. Silicon dioxide growth on silicon is called a thermal oxidation process so; we 

can have a simple model of this thermal oxidation process.  
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So, we saw that there were two ways of drawing Silicon dioxide you can either have a 

wet oxidation or a dry oxidation. In both cases, the typical operation temperatures are 

somewhere between 900 to 1200 this again depends upon the thickness of the silicon 

dioxide layer that we want to form and also the process time and so on.  

 

So, later we look at some numbers and try to compare both wet oxidation and dry 

oxidation; in both cases a Silicon dioxide layer is formed on the surface. So, for any 

further oxidation the oxidizing species, whether it is oxygen in the case of dry ox or 

steam in the case of wet ox has to diffuse through the Silicon dioxide layer reach the 

silicon interface in order to form further oxide.  

 

So, we can look at a basic model for oxide growth so, we first consider the gas phase; to 

the gas phase has the species that forms the oxide. Then, there is an oxide layer that 

forms on a silicon and then ultimately you have the silicon. Let me, just write this here 

so, we have 2 interfaces: 1 is the interface between the gas and the oxide layer. So, this 

oxide layer can either be a pre existing layer or you could be somewhere at the middle of 

the process. So, that you have an oxide layer of certain thickness.  

 



Let us, call this thickness d0 we have another interface between the oxide layer and the 

silicon. So, if you look at the various steps of oxide growth, the first step is that the 

oxidizing species has to be transported from the bulk to the oxide gas interface. So, I will 

use iF in future to denote an interface. So, the first step is the oxidizing species has to be 

transported from the bulk. 

 

So, let CG be the bulk composition and CS is the surface composition so, they must be 

some transport of the species to the interface so, that it can diffuse. So, let F1 be the flux 

corresponding to it, the next step is the oxide has to be the diffusing species has to be 

transported through the oxide layer.  
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So, you need to have diffusion through the oxide layer so, this could have some Flux F2. 

So, C0 could be the concentration at the gas oxide interface this is the concentration in 

the oxide layer and from here it goes to some concentrations Ci, which is the 

concentration at the interface. And then finally, we can have reaction with the silicon to 

form a new oxide layer this has the Flux of F3. So, if you look at this system in steady 

state.  
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F1 is equal to F2 equal to F3 so, that whatever species that diffuses from the gas phase to 

the gas oxide interface gets dissolved in the oxide. And diffuses uses to the interface, 

were it reacts with the silicon in order to form a SiO2. 1 of the assumption that the model 

is that, there is no dissociation of the species in the oxide. So, that whatever is in the gas 

phase get directly transported or directly diffuses across the oxide to the interface.  

 

So, we can actually model these various processes and using the relation between F1, F2 

and F3. Derive some numbers for how the oxide layer goes a grows as a function of the 

diffusion coefficient and also the thickness. So, let us take a look at that so, let me just 

redraw the diagram.  
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So, I have a gas phase, I have an oxide phase and then I have silicon; the oxide has some 

thickness d0, the gas has a bulk concentration CG and there is a surface concentration CS 

within the oxide. There is the concentration C0 at the surface and Ci at the interface, we 

also saw there were 3 fluxes: F1 F2 and F3 and F1 equal to F2 equal to F3 in steady 

state.  

 

So, consider the first process which is the movement of the diffusing species from the 

bulk of the gas phase to the surface. So, this can be simply written a some constant hG 

times CG minus Cs hG is nothing, but the mass transfer coefficient in the gas phase. So, 

we can rewrite this in terms of the composition of the diffusing species within the oxide 

layer.  

 

If you do that, F1 is h times C star minus C0; C0 we have already seen is the 

concentration at the interface of the gas oxide layer. It is the concentration of the 

diffusing species in the oxide layer; C star is the equilibrium bulk concentration in the 

oxide. We can usually think of this a some solubility limit so, on the case of dry ox, 

where dry oxidation the gas species that is diffusing is O2 in the case of wet oxidation 

the species that is diffusing a steam.  

 

So, C star is your bulk concentration in the oxide h is related to hG by Henry’s law. So, 

is hG divided by hK above when time temperature where h is the Henry’s law constitute. 



So, Henry’s law typically relates the amount of gas that is dissolve in any solid to the 

partial pressure of the gas.  
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So, this by these expressions we have written F1 which is the flux in the gas phase in 

terms of the concentration of the oxide layer, concentration of the diffusing species in the 

oxide layer. Next we can look at diffusion within the oxide layer.  
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So, this we can usually write in terms of some diffusion coefficient F2 which is D time 

C0 minus Ci by d0. So, d0 here is the thickness of the upside layer and I say mentioned 

earlier you can either, start with an upside layer of the surface or you look at the process 



at a specific time, where you have a certain oxide layer that is grown. C0 and Ci are the 

concentrations at the 2 interfaces D off course, is the diffusion coefficient.  

 

D is the function of temperature and is usually written as D0 exponential minus Ea over 

KBT which is the standard expression. So, D0 is a constant is diffusion constant and Ea 

is the activation energy. So, the values of D0 and Ea will change depending upon the 

diffusing species. The last flux term is F3; F3 is related to the rate of oxide formation.  

 

So, it is a rate at fix silicon reacts with a diffusion species to form the oxide an F3 is 

usually written as some rate constant ks time the concentration at the interface. So, ks is 

the rate constant for the Silicon; Silicon dioxide reaction.  
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So, the equating F1 equal to F2 equal to F3 it is possible to get the expressions for both 

C0, which is the concentration of the surface and Ci and also, how the thickness of the 

oxide layer changes as a function of temperature. There are usually 2 extreme cases 

when we at oxide growth on the surface.  

 

So, if look at oxide growth on the silicon surface there are usually 2 limiting cases now, 

diffusion in the gas phase which usually fast. So, that that is usually not rate limiting 

step, but 1 kind of process is where your rate limiting step is the diffusion of the species 

within the oxide layer.  
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This is called the diffusion controlled case or simply diffusion controlled role, in here the 

rate limiting step is the diffusion of the species through oxide layer to the silicon 

interface. So, the supply of the oxidizing species to the silicon SiO2 interface controls 

the over al rate of the process. So, this is usually the case when we have a thick oxide 

layer and at high temperatures where the rate of reaction is passed.  

 

The other extreme case is called Reaction Controlled so; in this case the conversion of 

silicon to Silicon dioxide; that is the rate of the process is the limiting step. So, Si to 

SiO2 is limiting usually; this is the case when we have a thin oxide layer and may be not 

a sufficient temperature for the reaction to happen. So, in this case both are essentially 

extreme conditions and they can actually be obtained with solving the general equation 

by equation the 3 fluxes.  

 

So, we can actually write a general equation that relates the thickness of the oxide layer 

to the time. So, this is obtained by solving for F1 equal to F2 equal to F3 the assumption 

is there is starting oxide layer of a certain thickness on the silicon before we start 

oxidation. So, the final solution I will just write the general equation will not go through 

the steps relates the thickness d0 to the time, A,B and tau are some constant.  

 

So, d0 here is the oxide thickness at time t A is equal to 2d so, d is a diffusion coefficient 

ks is the rate of reaction and h is the mass transfer coefficient, which is related through 

the mass transfer coefficient in the gas phase by Henry’s law. B is also a constant B is 



2D C star over N1. So, d again is the diffusion coefficient, C star is the bulk 

concentration of the diffusing species in the oxide and N1 is a number of oxide 

molecules incorporate is number of molecules incorporated in the oxide layer.  

 

So, this is again the diffusing species or let me just write diffusing molecules. So, this 

will be different whether you have Oxygen as a diffusing species or water as the 

diffusing species. Tau is nothing, but di square plus A di by B and di is the oxide 

thickness at time t equal to 0 so, this is the initial oxide thickness.  

 

So, this is a general expression that relates the thickness of the oxide layers to the various 

parameters in these right equations. So, we saw there are two extreme cases: 1 is 

diffusion controlled case; the other is reaction controlled case if we can take this 

expression and simply it to obtain various relations or different relations for these 2 

cases.  
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In the case of diffusion control so, here the diffusion of the oxide species through the 

oxide layer is what that matters. So, this is usually for a thick oxide in this particular case 

t is much larger than tau and t is much larger than A square over 4B it will uses 

assumptions in the general equation. So, let me write the general equation down.  

 

If we use assumptions in the general equation, this essentially simplifies to d0 square 

equal to Bt this is called a Parabolic rate law. Because, if we look at this equation 



resembles the equation of a parabolic; to see how we get this from the general equation 

we can rearrange the general equation.  
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You write this is d0 A over 2 is equal to 1 t plus tau a square over 4B whole power half 

minus 1. So, this is just rearrangement of this equation. So, if t is much larger than A 

square over 4B and t is much larger than tau. This equation will essentially simplify, that 

ignore this 1 and the other 1 and we are left with this d square equal to Bt or a parabolic 

rate law.  
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On the other hand, when you have a reaction controlled case. So, here the diffusion is 

passed, but, the reaction with the silicon is slow. So, in this particular case t plus tau is 

much smaller than A square over 4B. So, the final expression is d0 equal to B over A t 

plus tau which is a linear rate law. So, based upon these equations conclusion is as you 

have a thicker oxide layer it takes more time to grow.  
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So, let us put some numbers in so, consider the case of dry ox so; in dry ox the oxygen is 

a specie that is defusing for a typical temperature of 1100 degree centigrade, the constant 

B symbol 0.0117 micro meter square per hour. So, these values are usually tabulator for 

different concentrations, in different pressures and so on. So, have to glow and oxide 

layer d0 of 100 nanometers thickness the time that is required just by using the parabolic 

rate law equation is d0 square over B which is proximately 51 minutes.  

 

Now, instead of 100 nano meters if I want to do 200 nanometers so, d0 is 200 the time is 

not just double. So, it is not just 2 times 51, but because of this parabolic rate law. If you 

calculate is the actually 3 hours and 25 minutes or it is more than 3 times.  
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On the other hand instead of dry ox if you height wet oxidation B0 is higher. So, if you 

have wet ox B is higher B is usually 0.287. So, that the time to grow 100 nanometers is 

just 2 minutes.  

 

(Refer Slide Time: 37:00) 

 

So, comparing these two numbers 51 minutes for dry ox and just 2 minutes for wet ox 

shows you that wet oxidation is usually much faster than dry oxidation. Because, a 

diffusing species and the reactions there are involved are different. The trade of course, 

is that if you are looking for very uniform process control 2 minutes is usually too lesser 

time to get good process control.  



So, here you may either go for lower temperature in order to increase the time or you 

may go for a dry oxidation in case of wet oxidation. So, there always trade of involved in 

choosing the appropriate temperature, the appropriate diffusing species depending upon 

the oxide thickness that is required. So, the oxidation also depends upon the orientation 

of the silicon wafer.  So, this is because for example, if you look at silicon 1 1 1 usually 

the planer density is higher. Because, there is more packing so, this is actually a faster 

growth rate.  
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Just to compare at 900 degree c for wet oxidation, the value of B which is related to a 

diffusion coefficient is 0.151 micro meters per hour for the 1 1 1 plane, for the 1 0 0 

plane it is lower 0.143. So, again with increase in temperature this difference become 

smaller, but at lower temperature is always a significant difference into growth 

depending upon the plane that is exposed to the service.  

 

The presents of the oxide layer will also have in effect on the concentration of dopants. If 

you have N type dopants as the oxide layer is being formed, these N type dopants have a 

lower solubility in the oxide and they get rejected. So, if you have an N type silicon the 

oxide layer will lead to a pile up of a dopants in the silicon which is usually near the 

silicon; silicon dioxide interface.  

 

Remember the oxide layer is consuming the silicon as it grows. So, that any dopants 

there are if there are N type they basically get rejected. On the other hand, if you have P 



type silicon the oxide as layer as it grows will tent to consume the dopants. So, that there 

is a depletion this is significant because, we know that the dopants effect the electrical 

properties of silicon.  

 

So, by growing an oxide layer you can actually change the concentration of the dopants 

and effect the local electrical properties of the silicon. Usually, oxide layers there are 

grown especially for patterning are thick so, there are few 100 nanometers in thickness. 

Thin oxide layers are grown these days especially, when we have device scaling so, we 

have smaller and smaller dimensions.  

 

So, these thin oxides can also be grown at low temperatures. So, thin oxides usually they 

have a thickness of we just say thickness less than 30 nanometers or 300 angstroms. So, 

1 example is the case of and oxide layer that is used for the gate oxide usually high k 

dielectrics is used for the gate. But during the patterning process initial oxide layer is 

grown, which is then replaced by the high k dielectrics.  

 

This is a thin oxide layer is usually has a thickness of a few tense of nanometers; thin 

oxides can be grown by chemical reaction at temperatures close to room temperature. 

For example, an ultra thin oxide layer so, the thickness is less than 20 nano meters and 

we grown by silicon reacting with Nitric acid at temperature is around of 100 degrees. 

So, this is much lower than the conventional thermal oxide layers, were temperature is 

usually around the 1000 degrees.  

 

So, 10 orders of magnitude higher the advantage of growing thin oxides in these low 

temperatures is that these can be used with the regular patterning process. So, that we can 

grow oxide layers at really small areas so; thermal oxides are usually gone grown in a 

furnace it is a batch process.  
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So, that multiple wafers are grown at the same time so, you can usually have either 

Horizontal Furnace which is used for small wafers typically 3 or 4 inch wafers can have 

an Horizontal Furnace or a Vertical Furnace. So, Horizontal Furnace is are usually for 3 

or 4 inch wafers they are usually present in save research labs were work is done on the 

small wafers. Vertical furnace is usually used for large wafers so, almost always in all 

production kind of pads you will find vertical diffuse inferences.  
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If you look at a typical profile of a furnace you would have some you can divided into 3 

zones there is a source zone. So, the source zone is where you have your gas source there 



is a center zone, where usually the wafers are loaded. Then, there is a load zone the load 

zone is the 1 there is facing outer most.  
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If you look at the temperature profile across the furnace is usually a Flat profile in the 

center zone. So, this is temperature so the wafers that need to be processed are usually 

loaded in the center zone.  
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In the case of furnace growth for thermal oxide there is usually a Boat; the Boat contains 

the wafers for example, in the case of vertical diffusion furnace your boat could be 



having something like say 100 to 125 wafers. The wafers that need to be process so, 

these are call the product wafers are loaded in the center.  
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So, the product wafers are in the center and then a bunch of blank wafers are usually 

loaded at the ends. So, these are loaded in order to ensure temperature uniformity and 

also usually gas uniformity. So, these are called Blank wafers were also called Baffles, 

sometimes baffles are made of other materials are well and these are usually loaded at 

the edges. So, the boat is loaded and then fed into the furnace and then, there is a whole 

programming cycle that goes about.  
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So, the initial temperature is at room temperature so, these are heated to the process 

temperature expose to the gases and after the oxidation process is done they are cool and 

the boat is taken out and the wafers are unloaded. We only look at the oxidation process 

so far. Another example of a grown layer is a Nitradation layer or the Nitride layer that 

forms on silicon.  

 

So, the processes performing the Nitride layer is similar so, we can also think of it as a 

grown layer where you have a Nitride layer at the surface. So, we can think of similar 

models for diffusion and growth. We also have oxy nitride layers where we have a layer 

with both oxygen and nitrogen in them.  
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