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Density of States and Fermi - Dirac Statistics 

 

Let us start with a brief review of last class. So, in last class we looked at semi 

conductors and how a band gap evolves in them. We took the example of silicon as a 

material. Silicon in the outer shell has 2 electrons in the S orbital and 2 in the P. The S 

and P orbitals hybridized to give you 4 S P 3 orbitals. In the case of a silicon atom, each 

silicon atom has 4 electrons in this S P 3 hybrid orbitals. So, you can form 4 bonds. So, if 

we have 2 silicon atoms, they form a bond between them. This forms the bonding orbital, 

which is the sigma and the anti bonding orbital that is the sigma star. 
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So, in last class we saw that, if we have a silicon atom with 1 S P 3 orbital. You had 

another silicon atom with another S P 3 orbital. They form a bond and we called the 

bonding orbital sigma and the anti bonding orbital sigma star. Both these electrons will 

go to the sigma. So, the bonding orbital is full and the anti bonding is empty. So, this is 

in the case of 2 silicon atoms. If you had a silicon solid, you had a lot of these bonding 



and anti bonding orbitals. 

And these came together to form the valence band and the conduction band. So, the 

bonding forms the valence band, which is completely full and the anti bonding forms the 

conduction band that is empty. So, the valence band is completely full. The conduction 

band is empty. And there is a band gap between them. Last class, we also saw that at any 

temperature above 0 Kelvin, you would always some electrons from the valence band 

going to the conduction band. 

So, you will have electrons in the conduction band. The absence of an electron is called 

hole. And we will have holes in the valence band. In the presence of an electric field, 

these electrons in holes can move and they cause conduction. When these electrons in 

holes move, we also saw that they also see the effect of all the other atoms in the lattice. 

So, we introduced the concept of the effective mass, m e star and m h star. 

And these take in to account, the effect of all the atoms in the lattice. Just remind that, we 

do not mean that, the mass of the electron is actually changed. The mass still remains the 

same. But, we just club the effect of the atoms in to this concept of effective mass. The 

difference between a semi conductor and a metal is that, in a metal we do not have a 

band gap. We have some full states and we have some empty states. 

So, electrons are always available for conduction. And the number of electrons is 

typically equal to the number of atoms which means, metals have high conductivity. So, 

the next thing we are going to do is to try and calculate the number of electrons in holes 

that are available for conduction in the semi conductor. But, before we do that, today we 

going to talk about some concepts that we will use for this calculations. 
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The first thing we are going to talk about today is called density of states. I will write this 

as an abbreviation DOS. Briefly, if you have a system where there are N atoms, we saw 

that they give raise to N orbitals. So, these could be atomic orbitals, which come together 

to form molecular orbitals. And each orbital can have 2 electrons of opposite spin. So, 

you have a total of 2 N states. So, these states are discrete but for large values of N, this 

spacing between the states are so closed, that we can take it to be a continuous change in 

N. 

So, we have a band. The Density of States, DOS is defined as the total number of 

available states per unit energy and per unit volume. The operative word here, that it is 

the available states. So, these are the states that are available for the electrons to occupy. 

So, if you looking at the conduction band, the density of states in the conduction band 

tells you, how many states are there for the electrons to occupy? 

To looking at the valence band, then you look at the density of states of holes. The units 

for this, since it is per unit energy and unit volume. It is either joule inverse and meter 

cube inverse or we can also write it, in terms of electron volts and centimeter cube. 

Density of states are typically written as g of E. So, let us go ahead and calculate an 

expression for the density of states, in terms of the energy. 
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In the case of a real solid, you can measure the local density of states by spectroscopic 

techniques, as either a scanning tunneling microscope or as using a photo electrons 

spectroscopy. We can also do calculations for density of states, taking into account the 

distribution of atoms and electrons. But, what we will do is, to derive a simple 

expression for g of E for a solid with uniform potential. 

To simplify matters further, we will take our solid to be a cube of length L. And we will 

also take the potential inside this solid to be 0, uniform. So, this is a simplification of an 

actual solid. But, the values we will get are good enough in order to make calculations 

for electrons in holes, as we will see later. In the case of a solid in a uniform potential 

and three dimensions, the energy E is given as x square and y square plus n z square. 

And next, n y and n z are call quantum numbers. These are all positive integers. So, they 

have values greater than 0. So, n x n y and n z can take values of 1 2 3 and so on. We can 

write them as n square is equal to n x square plus n y square n z square. So, that energy E 

can be just written as h square and n square, which is the quantum number, which 

includes both n x n y and n z. So, n is also a positive integer and it take all possible 

values depending on the values of n x, n y and n z. 



For small values of n x, n y and n z, the energy levels are discrete. But, for large values 

they are essentially continuous. 
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We can represent this by taking a 3 D axis, with the quantum numbers along all three 

axis. In this particular case, n represents the radius of a sphere nothing but the radius of a 

sphere, which is made up of n x, n y and n z. If you want to find the total number of 

states, whose energy is less than n. Then the total number of states is nothing but the 

volume of the sphere. But, since as sphere can have both positive and negative values of 

this quantum numbers. 

And since, we said earlier that these quantum numbers are only positive. We only take 

the part of this sphere, lying in the first quadrant. So, it is the volume of the sphere times 

one eighth. So, the one eighth arises, because n x, n y and n z are all greater than 0. The 

volume of the sphere is nothing but 4 by 3 pi n cube, since n is the radius of the sphere. 

And you have the factor one eighth. Now, we also said that, each energy state can take 2 

electrons. 

You can have an electron with spin up and spin down. So, including spin, the total 

number of energy states S of n is 2 times. This expression is in terms of n. So, we need to 



convert it in to energy, so that we can calculate the density of states. 
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Let me rewrite the expression for S. We also wrote an expression earlier, connecting 

energy and n. We can rearrange this. So, all if done is to take L and all the other term this 

side and then write n, in terms of energy. This should be n, write n in terms of energy. 

Substituting for the n here, we can write the total number of states with energy less than 

E. It is nothing but now the density of states says is the number of states per unit volume 

per unit energy. 

So, the volume of the cube is nothing but L cube. So, the number of state per unit 

volume, which we denote as S subscripts v in energy E is nothing but S of E over L cube, 

which will take this expression out. So, this gives the total number of states per unit 

volume having energy less than E. If you want to find the density of states, so it is g of E. 

It is nothing but the differential of the total number of states, d S v over d E. 
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So, let me rewrite the expression here, g of E. So, differential of the total number of 

states with respect to energy, if we do the differential, the expression we get. Since, we 

are talking about electrons, I will replace the mass. By the mass of the electrons to write 

the final expression, 8 pi root 2. So, this is the expression for the density of states, for 

electrons in a 3 D solid with a uniform potential. 

Typically, in a solid we can replace the mass of the electrons by the effective mass. In 

the case of metals like cooper, silver or gold, we saw earlier that the effective mass is 

very close to the real mass. So, this expression will stand. If you using the same 

expression for semi conductors like silicon or germanium or gallium arsenide, then m e 

star and m e are different. So, there will be a difference in the value of the density of 

states depending upon, what effective mass you use. 

So, important conclusion from this is that, the density of states depends on a constant 

times this square root of the energy. On other words, g of E is proportional to the square 

root of the energy. Now, energy is taken with respect to the bottom of the band. So, E is 

with respect to the bottom of the band. So, the bottom of the band when E is very close 

to 0, the density of states is close to 0. And as the energy increases, g of E also increases. 



We can plot g of E on the x axis and E on the y axis and what we get is a parabolic 

expression. If you also looked at this expression, g of E is independent of temperature. It 

only tells you, what are the states that are available for the electrons to occupy? It does 

not tell you, whether the electrons occupy the states or not. In order to do that, we need 

to look at the occupation probability of electrons and that is what, we will do next. 

So, consider a system that is at 0 kelvin. In such a system, all the electrons or all the 

particles are at the lowest energy. So, what we want to know is, what happens to the 

system as temperature increases? So, there are number of statistics for describing such a 

system. 
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The simplest statistic is called the Boltzmann statistics. According to this, the probability 

of occupation of an energy state E, as a function of temperature is given by the 

expression P of E, some constant times exponential minus E over K B T. So, E is the 

energy in joules. K B is called Boltzmann constant and it is equal to 1.38 times 10 to the 

minus 23 joules per kelvin. According to this, at temperature T equal to 0, all the 

particles have zero energy. 

As temperature increases above 0 kelvin, there is a finite probability for occupation. Also 



for 2 temperatures T 1 and T 2, where T 1 is greater than T 2 to probability of occupation 

P of E at T 1 is greater than T 2, which means higher the temperature, higher the 

probability of occupation. Now, a Boltzmann statistics is good enough to describe a set 

of non interacting particles. The problem with using this for electrons is that, electrons 

have to obey paulis exclusion principle. 
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So, if we have electrons, electrons have to obey paulis exclusion principle, which states 

that, no 2 electrons can have the same set of all 4 quantum numbers. This translates in to 

the fact that, only 2 electrons can occupy a given energy state. This is the concept that we 

used, when we derive the density of states earlier as well. Now, because of this electrons 

obey another set of statistics called Fermi - Dirac statistics. This is denoted by F of E. 

And the expression for F of E is 1 over 1 plus some constant time exponential minus E 

over K B T. Now, A here is a constant and for a solid, A depends upon the Fermi energy. 

So, A is nothing but minus E F over K B T. And we saw earlier that the Fermi energy 

represents the highest occupied energy state. So, it is the gap between the occupied and 

the unoccupied states, in a metal. 



(Refer Slide Time: 25:04) 

 

So, if you put those two terms together, you have F of E 1 over 1 plus A. And for a 

metal, we said that A, hence the expression for F of E. So, this is the Fermi Dirac 

statistics. And this tells you, what is the probability of occupation of a given energy state 

has a function of temperature? 
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So, let me just rewrite the expression. So, at temperature T equal to 0, if your energy E is 

less than the Fermi energy. So, energy is below the Fermi energy. This term is negative. 

So, exponential of a negative number divided by 0, is exponential of minus infinity 

which is 0. So, the Fermi function is nothing but 1. This makes sense physically as well, 

because at 0 kelvin all the energy states below the Fermi energy are occupied. 

So, your occupation probability is 1 or a 100 percent. If your energy is greater than the 

Fermi energy E F, again your temperature is 0 kelvin. So, this is a positive number 

divided by 0, which is exponential of infinity. So, it is again infinity and 1 over infinity is 

0. So, all these takes above the Fermi energy are unoccupied. So, the occupation 

probability is 0. Also at any temperature, when E is equal to E F, so at the Fermi level E 

is equal to E F. So, this term is 0. F of E is half. We can put all these together and draw a 

pictorial representation of the Fermi function, as a function of temperature. 
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So, in this I will have energy on the y axis. F of E on the x axis and this is what, we will 

plotting. F of E, in go from 0 to 1 to immediate state is one half. And then energy I will 

write E F here. At 0 kelvin, F of E is just a delta function. So, as long as the energy E is 

less than E F, the value is 1. The energy goes above E F, the value is 0. So, this is F of E 

at 0 kelvin. I will just mark half at E F. So, now if you increase the temperature, some of 



the states above E F will get populated. 

So, there will be a finite probability. You draw this. This is at some temperature T 1. If 

you increase the temperature even more, and once again F of E will increase, so if we 

have some other temperature T 2, this is the occupation probability at T 2, where T 2 is 

more than T 1. Whatever be the temperature, the probability at the Fermi energies always 

half. Now, if E minus E F is much larger than K T, then the exponential term should be 

much larger than 1. 

In which case, F of E will simplify to this expression, exponential minus E minus E F 

over K T. And this resembles the Boltzmann statistic. So, thus at high energies, the 

Fermi function becomes simplified to the Boltzmann function. So, this is an 

approximation, which we will use later, when we calculate the electron and whole 

concentrations in a conduction band and a valence band. 

So, today we have talked about two terms. One is the density of states, which tells you 

the number of available states that are to be occupied. And then the Fermi function that 

tells you, whether these states will be occupied or not or in other words, what is the 

probability of these states being occupied? If you put these two together, you can get the 

total number of electrons or holes in a band. 
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So, this expression for the number of electrons or holes is nothing but the Femi function 

or the density of states times the Fermi function D E. The bottom of the band, we set as 0 

and we say E T is the top of the band. So, this is a total number of electrons with energy 

less than E T or the total number of electrons in a band. So, let us do an example to get a 

sense of some of these numbers and we will make use of a metal. 

So, we will take the example of silver. And we will calculate the density of states. And 

also some values of the Fermi function. So, silver is a metal which obeys nearly free 

electron model. So, each silver atom will contribute 1 electron. So, it is also a metal. So, 

you have a band that is half full. So, these electrons are available for conduction. The 

Fermi energy of silver is 5.5 electron volts. This Fermi energy is with reference to the 

bottom of the band. 

So, the bottom is taken as 0. If you want to find the density of states at the Fermi energy, 

we will make use of the expression that we derived earlier, for a solid with uniform 

potential. The expression, we saw earlier is proportional to square root of the energy also 

depends upon the mass of the electrons. In the case of silver, the effective mass is very 

close to the actual mass of an electron. So, I have just lefted as m e and E F is the Fermi 

energy. 



We can plug in the numbers. In SI units, m e has the value of 9.1 is 10 to the minus 31, h 

which is the plains constant and E F is 5.5 electron volts, which we can convert it in to 

joules. If we do the numbers, we get the density of states to be equal. So, these many 

states are available per joule and per meter cube, in the case of silver at the Fermi energy. 
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So, let me write the value again. We can convert this number into electron volts and 

centimeter cube. So, we will just make use of the conversion factor. And if you do the 

math, this comes down. Now, E F represents the top of the band. We said at the bottom 

of the band, the density of states is nearly close to 0. So, if we want to calculate g of E at 

the bottom of the band. So, if E is equal to 0, then g of E is 0. Let us look at E equal to K 

T, above the bottom. At room temperature T is nothing but 300 kelvin. So, K T is 0.025 e 

v or 25 milli e v, above the bottom of the band. So, we can do the same calculation that, 

we did earlier. 

Except, replace E F by K B T. And if you do that, the density of states 25 milli electron 

volts above the bottom of the band is still a large number, 6.8 times 10 to the 45. So, 

these are the values at the top of the band. So, 10 to the 46 but even at the bottom of the 

band, the difference is only 10 orders of magnitude. This is 46, this is 45. Or if you want 

in terms of electron volts, this is 22, this is 21. So, now we need to know, how many 



available states are there from the bottom of the band up to E F, which is the top of the 

band. 
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To do that the number of the steps from the bottom of the band to the top of band is 

nothing but an integration of the density of states. So, we will use expression for g of E. 

All these terms are constant. The only term that is the function of energy is E. So, in this 

expression you take the constant outside. We can do the integration and then substitute 

the limits 0 and E F. 
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If we do that, which if you calculate is 5 times 10 to the 28 states per unit volume per 

meter cube or 5 times 10 to the 22 centimeter cube. So, these are the total number of 

states that are available in silver, from the bottom of the band up to the Fermi function E 

F. We can also calculate the total number of atoms that are there in silver. 
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Number of atoms in silver per unit volume depends upon the density Avogadro’s number 

and the atomic weight. So, rho is the density. We can write it as gram per centimeter 

cube. For silver, the value is 10.5, n is Avogadro’s number. Choose the number of atoms 

per mole, 6.023. An atomic weight for silver is 108 grams per mole. We can substitute 

these values in this expression. So, the number of silver atoms is 5.85. 

So, these are the number of silver atoms. Each silver atom can donate 1 electron. So, 

these are the number of electrons. The number of states, which we calculated using a 

very simple model of a 3 D solid with a uniform potential, which we have written before. 

Then, we find that these two numbers are very close to each other. So, each atom will 

donate 1 electron. And each of this electron can occupy this states. 

So, you have a whole bunch of full states, from the bottom of the band up to E F. In all 

these states, above it are empty. These calculations are done at temperature equal to 0 

kelvin. So, we do not take into account. What is the probability of occupation? In order 

to do that, we need to look at the Fermi function. 
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So, let me write the expression for F of E. We also said that, when E minus E F is much 

larger than K T, this can be approximated by the Boltzmann function P of E. Now, at the 



Fermi level E equal to E F, F of E is always one half. It does not matter, what the 

temperature is? The probability of occupation is always half. Let us say, we have K T 

above the Fermi energy. So, E minus E F is nothing but K T. 

In this case F of E, we can substitute K T there, 1 over 1 plus exponential of 1. If you do 

the calculations, that is 0.26. What this number means is that, there is a 26 percent 

chance for an electron to occupy an energy state K T or 25 milli electron volts at room 

temperature, above the Fermi energy. P of E for the same value is 0.37. So, you are 

trying to approximate the Boltzmann function for the Fermi function. It is not good here. 

What happens, if E minus E F is 2 K T. So, again we can substitute, you get F of E is 

0.12 and P of E is 0.135. So, once again the values are closer. But, they are still not the 

same. What if E minus E F is 10 K T? At room temperature, this is 0.25 electron volts 

above the Fermi energy. In this case, F of E is 4 times 10 to the minus 5. And if you look 

at the Boltzmann approximation, it is very close. So, already 0.25 electron volts above 

the Fermi function or the Fermi energy, we can easily use the Boltzmann approximation 

instead of F of E. 

So, we will stop here for today. In the next class, we will use this concept of density of 

states and the Fermi function, in order to calculate the electron and holes concentration. 

We will first start with an intrinsic semi conductor, which is a semi conductor that is pure 

and node opens. And we will calculate the carrier concentration in that. And after we are 

done with intrinsic, we will move on to extrinsic semi conductors. 


