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In today’s assignment we are going to look at optoelectronic devices. So, this is 

assignment eight. In assignment seven we look at problems dealing with general 

interaction of light semiconductors. Today we are going to look specifically at some 

problems leading to devices. So, in the classes we look at photo detectors, solar cells, led 

s and lasers. We did a bit of solar cell trying to calculate the current voltage 

characteristics.  

So, some of the assignment problems here will mostly deal with solar cells. We will also 

look a bit at photo conductors and also a problem on led. We would not be focusing on 

lasers, because the way the laser works is very similar to how an led works, except that 

you have a population inversion that is created. And you have an incoming photon that 

stimulates the emission. So, let us go to problem number one.  
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In problem one, we have a p i n diode. So, you have a p type intrinsic and an n type. So, 

we ask to draw a qualitative energy band diagram both in equilibrium forward and 

reverse bias. So, we have a p i n diode so we have essentially two interfaces one between 

the p type and the intrinsic material the other between the intrinsic and the n type. For 

simplicity, we will just take this to be a homo junction so all the three materials are the 

same, the only difference is in the doping concentration and the type.  

So, I will start with the p i and n so we can draw the energy band diagram for all three of 

this. So, the material is the same so the valence band and the conduction band are 

essentially located at the same point. In the case of a p type material, the fermi level is 

close to the valence band. For an intrinsic, it is close to the middle and for an n type, e f 

is close to the conduction band. So, when we have this in equilibrium we know that the 

fermi levels must line up. So, in equilibrium I have the fermi levels line up far away from 

the interface your material will behaves as the same. So, this is p type, this is intrinsic, 

and this is n type.  

We making sure that the band gaps are approximately the same and then we can join all 

three. So, essentially this is your p i n junction in equilibrium. There are two contact 

potential are developed. One between the p and the intrinsic region and one between the 



intrinsic and the n type region. So, we can again draw this in both forward and reverse 

bias. The case of a forward bias, the p is connected to positive and n is connected to 

negative. So, that carriers are injected into the device and the barriers are lower. In 

reverse bias, it is the other way round p is connected to negative n is connected to 

positive, so that the barriers actually increase. So, let me draw that next.  
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So, in the case of a forward bias, p is connected to positive and n is connected to 

negative. So, in this side I have a p type semiconductor. At the center, I have an intrinsic 

and here I have an n type. We should be always slightly more clearly. So, important 

point is that in the case of forward bias the barrier is lower, so that you can have current 

going through the device.  

Now, you have a reverse bias. So, p is connected to negative and n is connected to 

positive. So, here the barrier is actually increased, so that now it is become more difficult 

for the current to flow through it. So, the last part of the question asked, for use as a 

photo detector do we use the p i n junction in forward or reverse bias. So, if we look at 

the working of a photo detector, a photo detector is one where light falls on to a material. 

So, on to a device and essentially this creates electron and holes which are detected as a 

current and the intensity or the value of the current is directly proportional to the 



intensity of the light.  

So, for this to happen we essentially want the current through the device to be very 

small, because if there is a background current that will essentially act as noise to the 

current that is generated by light shining on the material. So, this happens when the p i n 

junction is essentially connected in reverse bias. So, that electrons and holes that are 

typically created in the intrinsic region get separated. 

So, if I have a p i and n and I have the light shining on to the material. Electron is 

generated here, a hole is generated here. These electrons move to the end side and the 

holes move to the p side because of reverse bias and this gets detected as a current. The 

current once again is proportional to the number of electrons and holes that are 

generated, which is directly proportional to the intensity of the light that is falling. So, 

for use as a photo detector, the p i n junction on the p i n diode must be connected in 

reverse bias. So, let us now go to problem 2. 
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So, problem 2 essentially deals with led. Led is a light emitting diode, that based upon 

the fact that you inject the electrons and holes in your material. A typical diode is 

nothing but a p n junction, these electrons and holes recombine and basically give you 

light. The wave length of the light depends upon the band gap of the material. So, by 

tuning the band gap of the material by adding different dopants can essentially tune the 

light output. So, in this particular case we ask to show the change in emitted wavelength 

lambda. So, d lambda over dT so the change in wavelength with respect to temperature is 

approximately given to be minus hc over E g square dEg over dT and then we are ask to 

do the calculation for a gallium arsenide system, where the band gap is given and also 

the temperature variation is given. 

 So, the first part can actually be very easily shown. So, I just described the working of 

an led and said that the wavelength of the light is approximately equal to the band, 

depends upon the band gap of the material. So, lambda which is the wavelength of the 

light is equal to hc over E where E is the energy of the photon. This in turn depends upon 

the energy of the electron and hole that are involved in recombination. This electron and 

hole is usually very close to the valence band edge and the conduction band edge. So, 

that this can be written approximately as hc divided by Eg. So, usually the electron or the 

hole is not located exactly at the band edge, but there is some thermal energy is typically 



of the order of k t, but we can ignore the thermal energy and say that lambda is 

approximately hc over Eg. 

If you look at this expression h and c are essentially constants, the only variable is Eg. 

So, if we differentiate this we get d lambda over dT is nothing but minus hc over Eg 

square since you are differentiating one over Eg times dEg by dT. So, we are asked to do 

this calculation for gallium arsenide. Gallium arsenide has an Eg of 1.42 electron volts. 

This typically lies in the infrared region and the value of dEg or dT is also given 4.5 

times 10 to the minus 4 electron volts per Kelvin. So, we can calculate the in wavelength 

with respective temperature so d lambda over dT hc square over Eg times deg over dT so 

we can substitute all the values and this gives you a value 0.277 nanometer per Kelvin. 

 So, if you look at it dEg over dT with respective temperature is negative, which means 

the band gap essentially decreases with rise in temperature. Corresponding to a decrease 

in band gap the wavelength will increase because lambda is inversely to proportional to 

energy so d lambda with respective temperature is a positive quantity. So, the question 

also says your delta t is nothing but 10 degrees, so in Kelvin is the same 10 kelvin so the 

corresponding change in the wavelength delta lambda is nothing but 2.77 nanometers. So 

all we are doing is substituting delta t here and then just multiply. So, let us now go to 

problem three. 
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So, problem 3 relates to a solar cell so we have a solar cell at room temperature and it is 

under illumination. So, the intensity of the light is given, so I is 500 watts per meter 

square. The short circuit current is also given, so I sc I sc is 150 amps and also the open 

circuit voltage V oc is 0.53 volts. So, the question asked what is the short circuit current 

also the open circuit voltage when we double the value of the illumination? So, 



illumination goes in 500 to 1000 watts or one kilo watt per meter square. Similarly, what 

are the values when the illumination is essentially half. 

So, the short circuit current the essentially the current when there is voltage is equal to 0 

and I sc is proportional to the intensity of the light there is falling were typically it is 

equal to some constant times I ph. So, I ph if you write the substitute substrate the 

subscript here I ph was nothing but the intensity of the photons that is falling on to a 

solar cell. So, I sc essentially some constant k times I ph V oc which is the open circuit 

voltage. So, this is the voltage when the current through this system is essentially 0 is 

equal to kT over e lon of I ph by I s not where I s not is a reverse saturation cut. So, this 

depends upon the material of the solar cell and also the kind of the dopants, the 

concentration of the dopants, the width of depletion regions and so on. So, we have 

simple expressions were relate both I sc and V oc to the short circuit current and the open 

circuit voltage to your incident photon radiation. So, when we change the radiation 

intensity we can basically calculate the change in these values. So, now the new value of 

I ph is double so it is 2. 

So, let me write this as I ph prime. This is two times the original value 1000 watts per 

meter square. So, the new short circuit current so I sc new so I am going to write it I sc 

prime divide by the original I sc is nothing but I ph prime by I ph so is equal to 2. 

Therefore, the new short circuit current is essentially the double of the original short 

circuit current. So, this is nothing but 300 milliamps similarly, i can write the value of V 

oc so. 

V oc prime by V oc again you are taking the ratio of these two quantities k T over e, lon 

of I ph prime by I s not I ph by I s not. So, kT over e will essentially cancel, this we can 

simplify because the values of the I ph prime I ph are known, I s is not known but, we 

can calculate I s not by knowing the open circuit voltage when the current intensity is 

500 watts per meter square. So, from this we can e s t we can calculate the value of V oc. 

So, V oc prime is essentially 0.55 volts.  

So, we now have a situation where instead of doubling the photon intensity reducing it 

by half. So, ph is nothing but 250 Watts per meter square. We have reduced it by half, so 



the new short circuit current I sc double prime will also be half. So, this will be 75 

milliamps and the new V oc so let me write this is double prime is 0.48 volts. So, this we 

can get we following the same procedure were instead having it has 1000 and now have 

it as 250. So, let me now go to problem 4.  
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Problem 4 is also related to a solar cell, so we have a solar cell of area A is given and is 

connected to drive a load R of 20 ohms. So, R is essentially 20 ohms. So, we can actually 

draw how the solar cell connection looks. So, this is given as part of the question. So, 

you have the solar cells essentially connected to a resistor, so R is the resistor so light 

falls on the solar cell, so you have some light i which drives a current I. So, this intern 



generate a voltage V, that opposes the in-built voltage in the solar cell. So, the intensity 

of the light given so that is 1 kilo watt per meter square and we want to calculate the 

voltage in the circuit when the intensity is 1 kilo watt per meter square.  

The corresponding value of current for that is given. So, in the question along with how 

the solar cell is a connected, we are also given its iv characteristics. So, let me plot this, 

this I V characteristics is for 500 watts per meters square. So, we have current I that is in 

milliamps, we have voltage V. This is 0, you have 10, you have 20 this 0.2 you have 0.4 

let me just extend this a bit and you have 0.6. So, the I V characteristics so this is a I V 

characteristics of the solar cell. So, this is drawn when the illumination is 500 watts per 

meter square. So, we are asked to calculate the current for a particular voltage or the 

voltage for a particular current when the illumination is now changed to 1000 watts per 

meter square. So, we can go to the problem.  

Let us go to part a so when a solar cell is essentially driving an external resistor R, there 

is some current that is flowing through. So, this current at 500 watts per meter square 

illumination. I am going to call this as I 500. So, I 500 is given by intensity of the light 

plus a voltage due to the potential barrier that is created by the resistor. This is given as I 

not exponential ev over kT minus 1. So, this is a general expression that relates the 

current at a particular intensity to both the open circuit current, the short circuit current 

and also the voltage when you have some external load R sitting on the system.  

So, from the graph we can essentially mark the values of these various points. So, when 

V is equal to 0 this is a short circuit voltage the corresponding current I is minus 16.2 

milliamps. This is nothing but I 500 coma ph and just for simplicity, I will write this as I 

ph so this is the short circuit current. You can also calculate or you can also look at the 

open circuit voltage so that when the current is 0 the voltage is exactly 0.49 volts. This is 

the open circuit voltage. 

The question also says that the device at 500 milliamps or 500 watts per meter square 

illumination is essentially operating at point p and for this; we can calculate the current 

and the voltage. So, V is 0.45 volts and the corresponding current I is minus 13.1 

milliamps. So, this represents the operating point for the circuit. So, we now have to use 



these to calculate the values when your solar cell is illuminated with 1 kilo watt per 

meter square. 
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So, once again let me write the expression. So, I is equal to minus I ph plus I not 

exponential ev over kT minus 1. So, I not we do not know, but I ph we know. So, when 

voltage V is equal to V oc implies current is equal to 0. This is minus I ph plus I not 

exponential eV oc over kT minus 1. So, in this I ph is known, V oc is known, the only 

unknown is essentially I not. So, we can make the substitutions and I not is calculated to 

be 2.58 times 10 to the minus 11 amperes. So, this represents the reverse saturation 

current in this system. So, now the new illumination I knew, so let me call it I ph new so 

new illumination is 1000 watts per meter square.  

So, in the previous problem we saw that when the illumination is doubled the short 

circuit current is essentially doubled. So, I ph new is 2 times I ph 500 so this is minus 

32.4 milliamps. So, the corresponding current is also given, so I of 1000 is nothing but I 

ph new plus I not exponential ev over kt minus 1. So, this current is given and this is 

equal to 0.024 amps. So, I ph new we have just calculated, I not something we calculated 

from the data for 500 watts per meter square so this is known, this is known. 



We only unknown is the new operating voltage. So, we can make the substitution so that 

the new voltage V new is equal to 0.475 volts. We can also calculate the power in this 

system, so power is nothing but V prime times the current. So the current is I 1000 this is 

equal to 0.011 watts. We are also asked to calculate the efficiency of the system so the 

input radiation is 1000 watt so P in is 1000 watts per meter square. And the area of the 

solar cell is 1centimeter square. So, that is 10 to the minus 4 meter square. So, this gives 

you 0.1 volt so 0.1 volt is the input power the output power in the form of electrical 

current is 0.011 watt. So, the efficiency in terms of percentage is 0.011 divided by 0.1 

times 100 that is equal to 11 percent. So, let us now go to part b. 
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So, in part b we are asked to calculate the load. So, to have maximum power transfer 

from the solar cell to the load so once again the illumination I is 1 kilo watt per meter 

square or 1000 watts for meter square. So, in problem a we essentially looked at the load 

for a given value of current and voltage. We now have to find out the load at which the 

power transfer is essentially maximum, so power P is nothing but I times V which can be 

return as V times minus I of a 1000. So, we have I 1000 plus I not exponential ev over 

kT minus 1.  

So, this is the expression for the power we look at it everything here is a constant except 



for the voltage. So, it have maximum power so at maximum power dP over dV must be 

essentially 0. So, we can differentiate this expression for P. So, dP over dV that is given 

by I not kT by e v times exponential ev over kT minus I 1000 plus I naught exponential 

ev over kT minus 1 this is equal to zero. So, this you can get by essentially treating this 

as a differential of 2 functions so we differentiate one keeping the other constant, then 

you differentiate the other keeping the first one constant. This is now equated to 0 for 

maximum power so in this case I not is known, I 1000 is know this is the short circuit 

current at 1000. Which is two times the short circuit at 500 and we just calculated it. 

 So, the only unknown is essentially the voltage, so if you solve this, this gives the 

voltage V m, which is the voltage at maximum power and this is equal to 0.436 volts. 

The corresponding current I m is 0.031 milliamps and the resistor R is V m over I m 

which is 14.07. So, this is essentially the load at which the power is maximum. We can 

also do this for the illumination at 500 watts per meter square. So, I is 500 watts per 

meter square. We can repeat this, I will just write the answer I m is 0.015 amps, V m is 

0.42 volts and the load R m is essentially 28 ohms.  

So, the last part of the question part c, so we need to connect solar cells in order to drive 

a calculator. The calculator is to be used at a light intensity of 500 watts per meter 

square. So, when we have solar cells, each having a particular voltage and they should 

essentially be connected in order to give the voltage of 3 volts. These solar cells should 

be connected in series. So, the solar cells should be connected in series. So, if we look at 

the initial operating condition, that was specified in part a. The voltage for each solar cell 

is 0.48 volts, so voltage per cell is 0.48 volts. We basically want a total voltage of 3 

volts, so the number of cells is essentially 3 divided by 0.48 and you round off to the 

highest integer. So, this gives you 7. So, we need seven solar cells all connected in series 

to basically supply in a voltage to run a calculator.  
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Let us now go to the last problem, so problem 5 is related to photo conductor. So, we 

saw some variation of this problem in previous assignment, assignment seven. So, you 

have a photo conductor that is placed under uniform illumination. It says the absorption 

of light basically causes an increase in current. The increase is given when you have a 

particular voltage. Then the radiation is cut off, so that the excess carrier start to 



recombine and when that happens in the carrier concentration drops and the current also 

drops. 
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So, in this particular case we are going to take electrons to be the minority carriers. So, 

the increase in current is always due to the increase in the minority carriers. This is 

especially true when we have weak illumination, where we assume that the illumination 

intensity is smaller compared to the concentration of the majority carriers. So, electrons 

are the minority carriers and we have also given the electron mobility so mu e to be 3600 

centimeter square per volt per second. So, the first part of the question we need to 

calculate the equilibrium density of the electron hole pairs generated under radiation.  

So, we can write an expression for that, so the current I which is your photo current is 

due to the excess electrons that are created. So, this is equal to delta n which is the excess 

electrons times the mobility times the electric charge e of the electron times an electric 

field e that is applied across the material and since it is the current we have to multiply 

by the area. So, this expression is got from the original expression for conductivity. 

Conductivity is ne mu e plus p e mu h, conductivity sigma is related to the resistivity as 1 

over rho and R is nothing but row l over a. So, this is 1 over sigma l over A.  



So, this is the expression for the current due to the increase in the electron concentration. 

In this particular case I p is given, so this value is 2.83 milliamps. The electron mobility 

is given so this should actually be mu e. So, electron mobility is given, the dimensions of 

the device are given, E is the electric field which is nothing but the voltage V divided by 

the length L. So, the only unknown in this expression is delta n. So, delta n is 1.47 time 

10 to the 13 per centimeter cube. So, this is the excess electron hole pair concentration 

that is created when light is shining.  

Part b we want to calculate the minority carrier life time. So, when the light is switched 

off the concentration of the minority carriers essentially decreased and this is given by 

value either particular time t divided by the minority carrier lifetime tau. So, since we are 

dealing with electrons, I will call this tau e. So, you can write this in terms of current and 

if we do this dIp over dt is nothing but e mu e v over l times WD d delta n over dt d d 

delta n over d t is nothing but delta n an time 0 divided by tau. So, delta and a time 0 is 

nothing but what we calculated in part a dIp over dt which is the rate at which the current 

falls which given in the question. This value is 23.6 ampier for second so this is known, 

this is known the only unknown is tau e so tau e is essentially 119.6 micro seconds. Part 

c we want to calculate the excess density of electrons in holes 1 mini second after the 

radiation is turn off. 

 So, part c you want to calculate delta n 1 millisecond later so delta n at time t is nothing 

but delta n at time t equal to 0 exponential minus t over tau. So, t is one millisecond delta 

n at time t equal to 0 is what we calculated in part a, so is the excess equilibrium 

concentration tau is what we calculated in part b. So, delta n is nothing is but 3.44 times 

10 to the 9 centimeter cube. Once again we assuming a condition of weak illumination so 

that any change in conductivity is driven by the minority carriers. So, that in this 

particular case the change in concentration of the majority carriers which are holes is not 

significant enough to affect the conductivity. 


